Теплообменники для отопления

Чугунный теплообменник

Плюсы тепловых агрегатов из чугуна:

  • Высокая теплопроводность – чугунные элементы быстро нагреваются и эффективно передают тепло от одного носителя к другому.
  • Медленное остывание – теплообменники из чугуна долгое время остывают, что дает возможность сэкономить на работе отопительной системы.
  • Долговечность – чугун устойчив к воздействию слабых кислот и к образованию накипи, поэтому он менее подвержен коррозии, нежели многие другие металлы, что и обеспечивает длительный срок службы теплообменника.
  • Возможность увеличения функциональности – уже после установки агрегата к нему можно нарастить новые чугунные секции, тем самым увеличив мощность теплового оборудования.

Минусы чугунных теплообменников:

Громоздкость – чугунные агрегаты отличаются внушительным весом, что усложняет их эксплуатацию и обслуживание. При этом, чем больше масса теплообменника, тем выше его мощность.

  • Хрупкость – несмотря на большой вес, агрегаты из чугуна боятся механических ударов: они быстро обзаводятся трещинами, сколами и прочими деформациями.
  • Низкая устойчивость к температурным перепадам – хоть чугун и выдерживает максимально высокие температуры, от резких термических изменений на поверхности теплообменника могут появляться трещины, что чревато значительным снижением его работоспособности.

Подбор материала

Следует сразу отметить, что в домашних условиях создать теплообменник как на заводе практически невозможно. Вместе с тем, самодельная конструкция по функционалу не будет уступать созданной на предприятии.

Можно придать любую форму конструкции, но наиболее популярными вариантами является система, выполненная из нескольких металлических труб в виде решетки или пластин

В связи с тем, что температура горения достаточно высокая, тем более когда в качестве топлива используется уголь, следует особое внимание уделить выбору материала, а также уровню качества швов сварки. Кроме того, важную роль имеет тип металла, поскольку у каждого своя теплопроводность

Если взять медную трубу, то она в 7 раз будет превышать коэффициент теплопроводности, чем аналогичная труба, изготовленная из стали. При идентичном диаметре и объеме передаваемого тепла достаточно 3,5 метра медной трубы, при этих же параметрах стальной понадобится 27 метров.

Нагревательные элементы из меди самые дорогие, но эффективные. Если нет возможности потратиться на приобретение таких материалов, можно приобрести стальные трубы, но при этом их диаметр должен быть не менее 3,5 сантиметров.

Для справки! В том случае, если в качестве топлива будет использоваться уголь, то наиболее рациональным вариантом будет установка теплообменника из чугуна. Это самый прочный и теплоустойчивый металл. Кроме того, в качестве нагревательного элемента можно использовать старые чугунные батареи.

Основные виды пластинчатых теплообменников, их предназначение и преимущества:

1. Разборные (конструкция представляет собой пакет пластин и резиновые уплотнители):

  • низкие затраты на производство и монтаж;
  • регулируемая, легко настраиваемая производительность;
  • несложная дешевая эксплуатация, быстрый ремонт;
  • безотказность, минимальные интервалы простоя;
  • низкая энергоемкость;
  • возможность переработки.

Сфера применения пластинчатого теплообменника с разборной конструкцией: системы отопления, бассейны, холодильное и климатическое оборудование, горячее водоснабжение, теплопункты.

2. Паяные (цельная конструкция со спаянными пластинами, без резиновых прокладок):

  • компактность и низкая стоимость;
  • оптимальное соотношение производительности и стоимости;
  • быстрый и дешевый монтаж и сборка;
  • надежность и безотказность.

Область применения паяных конструкций: холодильные аппараты, компрессоры и турбинные установки, кондиционеры и вентиляторы, промышленные установки разного назначения.

3. Сварные и полусварные (соединенные при помощи сварных швов):

  • простая компактная конструкция без уплотняющих прокладок;
  • регулируемый поток;
  • устойчивость к действию агрессивных сред;
  • максимальный диапазон температур;
  • допустимое давление до 4 МПа, температура до 300 °С;
  • простота монтажа;
  • устойчивость к абразивным и агрессивным веществам;
  • надежность и длительный рабочий ресурс.

Сфера применения сварных и полусварных агрегатов: пищевая, химическая и фармацевтическая отрасль, системы кондиционирования и охлаждения, в том числе в промышленности и медицине, работа тепловых насосов и систем горячего водоснабжения.

Использование теплообменников пластинчатого типа для обеспечения ГВС

Такой способ хорош тем, что происходит полезное использование тепла обратной воды, а также тем, что схема компактна.
В новом теплообменнике это достигается путем увеличения количества пластин одинаковой площади.
На схеме представлен пластинчатый теплообменник для отопления самой простой конструкции с патрубками, расположенными по разные стороны агрегата. На подогрев поступает уже не совсем холодная, а теплая.
В системах с естественной циркуляцией такой тип установки малоэффективен

В ИТП Зависимое подключение отопления с автоматическим регулированием расхода тепла.
Важно и то, что никто не способен дать гарантии того, что эти расчет будут на процентов верными. Такой же фильтр желательно установить на вводе холодной воды — дольше будет работать оборудование

В итоге себестоимость горячей воды за литр будет намного ниже. Пластины пластинчатого теплообменника располагаются одна за другой с поворотом на градусов.

Строение у них более сложное, стоимость выше, но они способны отбирать максимум тепла высокий КПД. Схема сборки пластинчатого теплообменника не сложная, верхняя и нижняя направляющие закрепляются на штативе и неподвижной плите. Схемы подключения ПТО Схемы подключения пластинчатых теплообменников Здесь вы сможете узнать, какие бывают схемы подключения пластинчатых теплообменников к сетям коммуникаций. Ввиду небольших габаритов и веса монтаж теплообменника производится достаточно просто, хотя мощные агрегаты и требуют устройства фундамента.

Поговорим подробнее о наиболее доступных, надежных и эффективных. Мощность зависит от общей площади теплообмена, перепада температур в обоих контурах между входов и выходом и даже от числа пластин. При такой схеме подготовка воды происходит за два шага. Обвязка второй ступени идентичная параллельному подключению за исключением того, что вместо холодной воды подключается уже подогретая вода с первой ступени.

Строение у них более сложное, стоимость выше, но они способны отбирать максимум тепла высокий КПД. В соответствии с правилами помимо рабочего насоса параллельно ставится резервный такой же мощности. Опыт и умения специалистов позволяют как выполнить простейшие расчеты, так и сложный монтаж с пуско-накладкой. Тогда пластины производятся из титана, никеля и различных сплавов, а прокладки — из фторкаучука, асбеста и других материалов. Следует отметить, что кожухотрубные системы почти исчезли с рынков из-за низких показателей КПД и больших размеров.
Теплообменник пластинчатый принцип работы

Особенности устройства теплообменника газового котла

Одно из важнейших мест в отопительной схеме занимает устройство теплообменника газового котла. Но далеко не все потребители знают, в чем состоит его функция.

Между тем, именно от этого компонента, а также от правильности его встраивания в отопительную цепь, во многом зависит эффективность работы всей системы.

Функциональное назначение в газовом котле

Основное назначение любого обменника тепла — это, во-первых, передача тепловой энергии от источника нагревания (чаще всего, от газовой горелки) к теплоносителю (как правило, воде в замкнутом или незамкнутом контуре) и, во-вторых, передача тепла от одного теплоносителя, разогретого до нужной температуры, к другому, холодному, теплоносителю.

По способу передачи тепловой энергии от источника тепла к технической жидкости различают 3 основных вида термообменников.

При участии первичного, состоящего из медных трубок и пластин, осуществляется передача тепла от сгорающего в горелке газа к жидкому теплоносителю. Используется в основном в контуре отопления помещений.

Вторичный обменник передает тепло от нагретого (в первичном термобменнике) носителя непосредственно к нагреваемой среде. Представляет собой пластинчатое устройство, предназначенное для подогрева воды из водопроводной системы дома.

Третий вид обменника тепла — совмещенный битермический, осуществляет двойной обмен теплоносителей. Чаще всего на практике применяются двухконтурные (с первичным и вторичным обменниками тепла) котлы, реже — одноконтурное (только с первичным термообменником) отопительное оборудование.

Принцип работы первичного и вторичного устройств в двухконтурном отопительном котле

В схеме двухконтурного котла первичный теплообменник «отвечает» за работу отопительного контура (рис.1).

Указанный обменник (5) получает тепло от горелки (1). Благодаря трехходовому перепускному клапану (3) нагретая вода, циркулирующая в системе за счет гидропомпы (2), не попадает во вторичный теплообменник, а направляется исключительно по отопительному контуру (А). Жидкость, остывшая в процессе отдачи тепла помещениям, возвращается в нагревательный котел по обратной линии (D).

Вторичный обменник тепловой энергии включается в циркуляцию нагретой воды в том случае, если нагретая жидкость или перенаправляется в систему горячего водоснабжения (ГВС) с одновременным отключением отопительного контура, или проходит одновременно по системам отопления и ГВС. В первом случае (рис.2) клапан (3), перекрыв отопительный контур (А), пускает течение воды от первичного теплообменника к вторичному устройству (4).

Внутри данного термообменника проходит трубопровод, по которому в нагреватель поступает холодная вода из общей водопроводной сети (С). Проходя через толщу жидкости, разогретой до заданной температуры, холодная вода, в свою очередь, нагревается и в таком виде попадает уже в систему горячего водоснабжения (В).

Некоторые моменты профилактики

Для качественной работы двухконтурного котла надо обеспечить следующее:

  1. На входе в котел трубопровода холодного водоснабжения следует устанавливать фильтр, препятствующий загрязнению теплообменника.
  2. Чтобы замедлить образование накипи в трубопроводе, надо отрегулировать нагрев воды в ГВС не выше 45-50°С.
  3. Выполнять капитальную очистку теплообменников раз в 3-7 лет. Если вода слишком жесткая, чистить устройство не реже одного раза в 3 года.

Если эти требования будут соблюдены, потребитель может рассчитывать на долгую и надежную работу оборудования.

Преимущества теплообменника

Нагревательный элемент в системе отопления, установленный в печи, имеет свои преимущества. Среди основных плюсов можно выделить следующие:

  1. Простота изготовления и монтажа.
  2. В доме появляется комбинированное отопление, что дает возможность отапливать большие площади, а не только локально одно помещение.
  3. Возможность использовать разные виды топлива. Например, котлы ориентированы только на конкретный вид, а печь можно топить любыми твердыми энергоносителями.
  4. Печь придает интерьеру особый шарм и уют, а благодаря новой функции она будет приносить еще больше пользы.

Несмотря на очевидные преимущества, следует отметить, что в сравнении с котлами, сделанными в заводских условиях, КПД будет ниже, кроме того, отсутствует автоматический контроль температуры нагрева теплоносителя. Вместе с тем, стоимость заводских котлов не каждому по карману, а изготовление отопительной системы своими руками с использованием самодельного элемента нагревания под силу каждому.

Преимущества отопления с теплообменником

Принцип подключения теплообменника к системе отопления

Если разбираться, для чего нужен теплообменник в системе отопления, можно заметить несколько явных преимуществ:

  1. Простота изготовления. Если в доме уже существует печь, то придется потратиться только на изготовление самодельного теплообменника и монтаж системы отопления.
  2. Комбинированное отопление. Дополнительно к обогреву дома от поверхности печки прибавится водяная система отопления.
  3. Разнообразие видов топлива. Можно топить печь любыми твердыми энергоносителями, в отличие от котлов, ориентированных только на определенный вид топлива.
  4. Красивый внешний вид. Сохранить традиционный вид русской печи бывает полезно при создании интерьера в национальном стиле.

Среди недостатков отопления через теплообменник можно назвать: менее высокий КПД по сравнению с заводскими котлами и отсутствие автоматического контроля за интенсивностью нагрева теплоносителя.

Бесперебойное производство

Уверенность в будущемДля персонала компании Альфа Лаваль обязательства перед заказчиком не прекращаются в момент поставки оборудования. Наша служба запасных частей и сервисного обслуживания всегда готова оказать содействие, чтобы Ваше оборудование продолжало работать с максимальной отдачей на протяжении всего срока службы. Этот принцип «постоянной эффективности» является основополагающим в политике нашей компании.

Служба сервисного обслуживания и запасных частей компании Alfa Laval представляет собой глобальную сеть центров, где высококвалифицированные специалисты готовы обеспечить вас необходимыми запасными частями. Эти центры работают в 50 странах мира, 365 дней в году, 24 часа в сутки.Сервис Альфа Лаваль основан на глубоком понимании потребностей наших заказчиков. Мы рассматриваем каждую единицу оборудования как часть всего технологического процесса. Мы работаем в тесном сотрудничестве с Вами, предоставляем индивидуальные сервисные пакеты, отвечающие потребностям заказчиков.

Любой из предложенных нами пакетов сервисных услуг гарантирует оптимальное решение проблемы и максимальный экономический эффект.

The player will show in this paragraph

Преимущества теплообменника

Нагревательный элемент в системе отопления, установленный в печи, имеет свои преимущества. Среди основных плюсов можно выделить следующие:

  1. Простота изготовления и монтажа.
  2. В доме появляется комбинированное отопление, что дает возможность отапливать большие площади, а не только локально одно помещение.
  3. Возможность использовать разные виды топлива. Например, котлы ориентированы только на конкретный вид, а печь можно топить любыми твердыми энергоносителями.
  4. Печь придает интерьеру особый шарм и уют, а благодаря новой функции она будет приносить еще больше пользы.

Несмотря на очевидные преимущества, следует отметить, что в сравнении с котлами, сделанными в заводских условиях, КПД будет ниже, кроме того, отсутствует автоматический контроль температуры нагрева теплоносителя. Вместе с тем, стоимость заводских котлов не каждому по карману, а изготовление отопительной системы своими руками с использованием самодельного элемента нагревания под силу каждому.

Взаимные связи

К наиболее важным характеристикам можно отнести интенсивность процесса теплообмена, тепловую мощность теплообменника – количество теплоты, которое он способен передать (забрать) за единицу времени. Она традиционно измеряется в гигакалориях (Гкал) или киловаттах (кВт) в час и, в первую очередь, связана с разницей температур теплоносителей – теплоотдающей и тепловоспринимающей сред – на входе теплообменного аппарата. Чем больше разница, тем больше энергии один теплоноситель теоретически сможет передать другому.

На практике, кроме температуры, определяющее значение имеют и другие физические величины.

1. Площадь поверхности теплообмена. В случае с кожухотрубным теплообменником она равна совокупной площади внешней поверхности всех труб трубного пучка. Увеличение площади ведёт к увеличению интенсивности теплоотдачи.

Сделать это можно тремя способами:

  • скомпоновав пучок из максимально возможного количества труб (ведёт к увеличению диаметра кожуха теплообменника);
  • увеличив длину труб и, соответственно общую длину всего агрегата;
  • увеличив площадь поверхности каждой трубы, сделав её «гофрированной», волнообразной.

2. Теплопроводность и теплоёмкость. Поскольку тепловая энергия передаётся от одной среды к другой опосредовано, через промежуточный агент – материал стенок труб – для лучшей теплоотдачи они должны быть изготовлены из сплава, быстро и с минимальными потерями пропускающими тепло (высокая теплопроводность) и не накапливающего, не задерживающего её (низкая теплоёмкость).

Одним из вариантов увеличить теплопроводность и одновременно снизить теплоёмкость является уменьшение толщины стенок труб. Однако, при утончении стенок снижается способность труб выдерживать давление теплопроводящей среды, а от давления в системе зависит ещё один параметр – скорость прохождения теплоносителя.

3. Время и вектор контакта. Они напрямую зависят от скорости и направления прохождения теплоносителей сквозь обменник. Здесь есть нюанс:

  • с одной стороны, скорость должна быть достаточно медленной, чтобы греющая среда успела отдать тепло нагреваемой;
  • с другой стороны, чем выше скорость, тем больше тепловой энергии в общей сложности пройдёт через обменник и, соответственно, увеличится общая тепловая нагрузка.
  • однонаправленное движение теплоносителей («прямоток») менее эффективно, нежели встречное движение («противоток»);
  • перпендикулярное движение («перекрёстный ток») для кожухотрубных теплообменных аппаратов является наиболее эффективным.

Для оптимизации времени и вектора контакта теплоносителей в устройстве кожухотрубного теплообменника применяются различные технические ухищрения:

  • поперечные перегородки в кожухе, чтобы внешний теплоноситель омывал трубы не прямолинейным прямоточным или противоточным, а зигзагообразным перекрёстным движением, обеспечивая нужный вектор контакта;
  • продольные перегородки в распределительных камерах (для двух-, четырёхходовых и т.д. теплообменников), чтобы внутренний теплоноситель проходил вдоль теплообменника дважды (четырежды и т.д.), увеличивая тем самым время контакта.

Разновидности конструкции

Поверхностный теплообменник пользуется большой популярностью среди населения. Он встречается не только в жилых комнатах, но и промышленных цехах. Обычно он комбинирует несколько отопительных систем. В устройстве между собой взаимодействуют пар и вода, масла и неорганические вещества.

В свою очередь этот теплообменник делится на рекуперативные и регенеративные. Первый вариант работает от нагрева стен носителя. В случае со вторым все обстоит иначе. Принцип заключается в том, что горячий теплоноситель нагревает поверхность обменника, затем к стенкам, которые аккумулировали тепло, подводится холодный теплоноситель.

Смесительный. Здесь горячий носитель проникает в холодный. Благодаря смешению вырабатывается тепло и подается к элементам. Такой вид встречается практически редко.

Исключение составляет лишь солнечный водяной коллектор. При воздействии лучей носитель поступает в накопительную емкость, куда идет и горячее, и холодное водоснабжение. В результате обработки происходит повышение температуры.

История

Пластинчатые теплообменники были впервые введены в 1923 году для пастеризации молока, но в настоящее время используются во многих областях применения в химической, нефтяной, климатической, холодильной, молочной, фармацевтической, пищевой и медицинской промышленности. Это связано с их уникальными преимуществами, такими как гибкая тепловая конструкция (пластины могут быть просто добавлены или удалены для удовлетворения различных требований к тепловому режиму или обработке), простота очистки для поддержания строгих гигиенических условий, хороший контроль температуры (необходимый в криогенных процессах) и лучшие характеристики теплопередачи.

Принцип работы теплообменника

  • конвекция;
  • тепловое излучение;
  • теплопроводность.

Классификация приборов происходит по тому, каким из способов тепло поставляется к холодному объекту, а именно:

  • смесительный способ;
  • теплообменный способ.

В их принципе работы, устройстве и виде заключается основная разница

Именно потому важно, прежде чем совершить покупку теплообменника, изучить все имеющиеся виды в продаже. Лучшим вариантом описания принципа действия изделия является пример с поверхностными агрегатами

Они считаются одними из самых распространённых конструкций среди пользователей. Внутри этого прибора сосредоточены чувствительные элементы, которые нагреваются, передавая тепло холодному объекту.

Если взять смесительный агрегат, то он совмещает в себе взаимодействие воздуха и жидкости, выдавая в итоговом результате высокий уровень коэффициента полезного действия. Тем самым — это устройство становится лёгким по изготовлению, с высокой скоростью получения нужного результата. Только при смешивании двух различных сред можно достичь подобных результатов.

Каждый теплообменник имеет и набор устройств, которые работают по особому принципу. Их разделяют на два вида:

  • рекуперативные;
  • регенеративные.

В первом виде подразумевается использование двух разных жидкостей. Они взаимодействуют между собой с помощью разделительной стенки. В процессе обмена температурами, поток в обоих вариантах остаётся прежним и не изменяется. Во втором виде теплообменников прослеживается наличие рабочего элемента, который в то же время является и источником поставляемого тепла и своеобразным зарядным устройством. При контакте с жидкостями, элемент нагревается, издавая в пространство необходимое тепло. В этом случае, поток тепла может изменить своё направление.

Классификация печей-каминов

На современном рынке представлено огромное количество самых разных моделей печей-каминов. Все эти конструкции – это печи со встроенным теплообменником, поэтому для выбора подходящего варианта используются другие параметры, например, тип используемого топлива или номинальная мощность.Самые популярные печи-камины:

  1. Печи-камины «Викинг» . Одни из наиболее эффективных типов печей. Обладают потрясающей скоростью прогрева помещения, вне зависимости от его габаритов. В качестве топлива используются дрова или бурый уголь. Единственный недостаток: «Викинги» отказываются работать с каменным углем.
  2. Печи-камины на пеллетах . Как следует из названия, эти печи «питаются» не привычными дровами или углем, а пеллетами. Пеллет – это вид топлива, который отличается экологической чистотой и выпускается в гранулах. Изготавливается из отходов деревообрабатывающей промышленности методом прессовки. Такое топливо не представляет никакой опасности для окружающей среды и обходится очень дешево, чем и обуславливается его высокая популярность. Кроме того, пеллеты не будут чадить в доме, поэтому к их плюсам можно отнести и повышенный комфорт.
  3. Печи-камины «Кедди» . Конструкция шведского происхождения, выпускается в двух вариантах: угловом и пристенном. Печки обладают рядом преимуществ по сравнению с аналогами: во-первых, их дизайн значительно превосходит другие конструкции. Во-вторых, «Кедди» обладают небольшим весом, поэтому им не нужен фундамент, да и процесс установки будет значительно упрощен. Подключение к дымоходу и система каналов тоже довольно просты, потому-то эти системы так популярны.
  4. Варочная печь с камином . Основной отличительной особенностью этих конструкций является функциональность. Такие печки отлично подходят для готовки, греют дом и при этом приятно выглядят. Свою популярность эти комбинированные печки заслужили именно за эти качества, которые позволяют реализовать широкий круг задач и при этом мысленно вернуться в прошлое, когда открытый огонь был основным способом готовки и обогрева.
  5. Печи-камины «Байкал» . Этот вариант чаще всего используется в загородных домах. Данная модель крайне эффективна, а при необходимости более точного выбора можно рассмотреть весь модельный ряд. Используемое топливо – дрова. Основная характеристика таких печей – невероятно долгая сохранность тепла даже при давно потухшем огне.

Заключение В данной статье были рассмотрены виды теплообменников и их классификация. Теперь изготовить теплообменник для печи своими руками не будет составлять особых проблем

Для большей наглядности можно обратить внимание на фото, где показаны теплообменники и особенности их производства

Бытовые модели и цены на них

В данный момент на рынке представлено большое количество приборов для теплообмена, отличающихся друг от друга типом конструкции, скоростью нагрева, объёмом бака и стоимостью.

Пластинчатых

Вот несколько популярных моделей:

  1. Р-012-10-19 ПРОМТЕХСЕРВИС. Пластины данной модели изготавливаются из стали. Между пластинами располагаются термопрокладки, эффективно передающие тепло от носителя к приёмнику.

    Прочность конструкции обеспечивается гофрированной поверхностью. Примерная стоимость устройства: 14000 рублей.

  2. KAORI Z. Модель паянной разновидности. Потоки направлены по диагонали. Пластины обладают большой площадью теплообмена. Прочная и надёжная модель. Стоимость от 32000 рублей.
  3. Innovita ГВС. Бюджетное решение, устанавливается на газовый котёл или теплосеть. Модель предназначена для использования с котлами Innovita. Стоимость от 8000 рублей.

Кожухотрубных

Ниже представлены популярные модели теплообменников кожухообразного типа:

  1. ТНГ-1,6-М8/20Г-2-2-И. Популярная модель, часто используемая в промышленности и в быту. Имеет трубные решётки и вертикальный тепловой компенсатор. Цена – от 9000 рублей.
  2. Подогреватель кожухотрубный ТТАИ. Конструкция представляет собой две трубки с тонкими стенками разного диаметра, одна вложена в другую. Тонкие стенки способствуют более эффективной отдаче тепла. Устройство компактное и лёгкое в обслуживании. Цена – от 7500 рублей.
  3. Bowman 190 кВт. Устройство премиум-класса. Титановые трубки с противокоррозийным покрытием пригодны для взаимодействия с хлорированной и морской водой. Может работать как на нагрев, так и на охлаждение. Цена от 120000 рублей.

Виды теплообменников

Различают несколько видов данного устройства. Все теплообменники делятся на:

  • трубчатые;
  • пластинчатые — неразборные (паяные), разборные.

Трубчатые теплообменники — это по сути труба большего диаметра, в которую вварены трубки меньшего диаметра.

Пластинчатые теплообменники — это устройства, состоящие из набора пластин, в которых отштампованы волнистые каналы и поверхности для прохождения жидкости. Пластины укрепляются между собой стяжками и прокладками из резины.

Пластинчатые агрегаты более легки в ремонте. Также они имеют меньшие габариты. В трубчатых агрегатах теплообмен происходит в трубе малого диаметра, находящейся в трубе большого диаметра. Поэтому их можно использовать при высоких давлениях, а пластинчатые нельзя.

Кожухотрубный теплообменник

Кожухотрубный теплообменник – устройство, в корпусе которого расположена одна или несколько труб. Установка состоит из секций, нарастив которые, можно увеличить мощность. КПД конструкции составляет 70%.

Кожухотрубный теплообменный аппарат для отопления и горячего водоснабжения

Производители нашли способы приблизить КПД трубного теплообменника к пластинчатому:

спиральное расположение пучка труб;

многоходовая циркуляция греющей жидкости;

оребрение – лента в виде гармошки или спирали, расположенная на внутренней стороне труб.

Установка менее подвержена появлению накипи, чем другие типы теплообменных аппаратов.

Для кожухотрубного теплообменника характерны следующие недостатки:

1. Снижение эффективности изделия в 3-4 раза при появлении накипи.

2. Нарушение вальцовки и протечка труб из-за постоянного изменения температуры.

3. Наружная рубашка теплообменника подвержена появлению свищей.

4. Габаритную и тяжелую конструкцию (до 150 кг, длина – 4 метра) неудобно транспортировать и монтировать в помещении.

5. Высокая стоимость изделия.

Для повышения производительности проектировщики внесли изменения во внутреннее устройство, из-за чего изделие лишилось одного из главных преимуществ – легкого демонтажа и ремонта.

Устройство теплообменника для систем отопления

Приспособление предназначено для передачи тепла от одного элемента к другому. В роли источника тепла и теплоносителя выступают различная жидкость, газ или пар.

Нестабильные среды разделены материалом с подходящим типом теплопроводности.

Простой пример теплообменника — комнатные радиаторы, в которых источником тепла является вода в системе отопления, нагреваемой средой — воздух в помещении.

В качестве разделяющего материала выступает металл, из которого состоит радиатор. Промежуточный материал, который используется при конструировании, должен обладать высокой степенью теплопроводности.

Хорошим вариантом для конструирования теплообменника будет применение медных элементов. Медь обладает большей в 7.5 раз теплопроводностью, чем сталь. Пластмассовые изделия в двести раз хуже проводят тепло, чем стальные. Сравнивая при одинаковых условиях 1.7 м медного, 12 м стального и 2 тыс. метров пластикового трубопровода получится передача одинакового количества тепла.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий