Кафель 6.0
Специализированная программа для раскладки плитки и обоев. Есть три версии: Home для домашнего пользования, Profi — для профессионалов, Profi+Render — профессиональная с расширенным функционалом. Для самостоятельного создания дизайна подходит Кафель 6.0 Home, но она не бесплатная — 1000 рублей за месяц использования. Все их можно приобрести на сайте кампании tile3D.com. Естественно, есть взломанные копии, но насколько безопасно их скачивать сказать сложно.
Программа для раскладки плитки в 3D Кафель 6,0
Программа в нынешнем варианте хороша: даже урезанная домашняя версия позволяет создавать объемные проекты (3D) и получать расчеты по необходимым материалам (кроме целой и резанной плитки считает количество клея и затирки для швов). Что еще она может:
- Учитывать дверные и оконные проемы, колонны, арки и другие криволинейные поверхности.
- Есть возможность вносить новые плитки в справочник, сохранять их для дальнейшего использования.
- Плитки можно устанавливать и смещать под любым углом.
- Можно добавить объемные изображения других объектов (ванна, душ, и т.д.), задав их координаты.
- Программа производит расчет плитки и расходных материалов, но в «домашней» версии вывести их на печать нельзя, зато можно списать с экрана или сделать скриншот и распечатать как изображение, а не таблицу.
Кроме этого можно изменять степень освещенности, блеска и рельефности плитки. Все эти настройки можно делать для каждого отдельного объекта. Что еще хорошо — на сайте есть учебные виде по работе с программой, где по шагам описано создание проекта. Работать в программе легко, интерфейс понятен, осваивается с первого раза. Из недостатков домашней версии — нельзя получить развертку по стенам, что совсем неудобно. В общем, программа хороша, но не бесплатна.
Правила расчета и варианты укладки
От выбранного способа укладки непосредственно зависит расход материала и теплоэффективность готовой системы.
Различают три способа размещения труб: змейка, улитка и комбинированный.
Змейка
Способ отличается простотой расчетов и легкостью монтажа, что делает его очень популярным. Такая схема наилучшим образом подходит для промышленных зданий, помещений с малыми потерями тепла и объектов, нуждающихся в круглогодичном отапливании.
Рекомендуем ознакомиться: Как определить необходимую высоту дымохода относительно конька крыши?
Главный недостаток такого способа укладки – ощутимая разница температур на различных участках пола. Кроме того, трубы часто изгибаются под достаточно большими углами, что делает проблематичным реализацию проектов с малым шагом. Частично решить эту проблему поможет использование стальной пружины, которая натягивается на место будущего изгиба, и препятствует образованию излома.
Улитка
Встречается также обозначение «спираль» или «ракушка». В такой схеме температурное поле распределяется по поверхности пола более равномерно, поскольку трубы прямого и обратно контура укладываются попеременно.
Трубы размещаются параллельно и монтируются по направлению от стен к центру. В средней части помещения подающая линия завершается петлей, переходящей в обратный контур, идущий, напротив, от центра к коллектору.
Достоинства такого способа укладки:
- Равномерный прогрев помещения.
- Отсутствие резких изгибов и, как следствие, малое гидравлическое сопротивление.
- Уменьшенный расход трубного материала.
Этот способ считается наиболее трудоемким при проектировании и для практической реализации.
Комбинированный способ
Как правило, такой способ укладки выбирается для больших помещений, поверхность пола которых разбивается на отдельные зоны. Для каждой зоны при этом подбирается оптимальный способ расположения труб: в районе окон, дверей и по периметру – змейкой, в центре помещения – спиралью.
Укладка труб производится настильным или бетонным методом:
- В первом случае используются готовые панели реечного или модульного исполнения, оборудованные пазами и столбиками для удобной фиксации труб. После укладки труб конструкция накрывается гипсоволокнистыми плитами и напольным покрытием. Несмотря на удобство и скорость монтажа, такой способ до сих пор не получил широкого распространения.
- Монтаж в бетонную стяжку потребует гораздо больше времени. Только на высыхание и укрепление слоя бетона потребуется не менее 28 дней (в зависимости от толщины слоя).
Рекомендуем ознакомиться: Вентиляция и воздуховоды прямоугольной формы сечения
Процедура укладки в стяжку производится в такой последовательности:
- Слой гидроизоляции. Укладывается в нижнюю часть конструкции, препятствует образованию конденсата.
- Термоизоляция. Подойдет любой листовой теплоизолирующий материал. Его задача – не допустить утечку тепла вниз, а толщина слоя определяется сообразно внешним климатическим условиям.
- Фольгированная пленка. Перенаправляет максимальный объем теплого воздуха в комнату, позволяя экономить на расходе теплоносителя.
- Армирующая сетка. Обеспечит стяжке необходимую прочность.
- Монтаж трубопровода. Один или несколько контуров, по которым идет циркуляция теплоносителя.
- Контрольные испытания. В смонтированную систему подается теплоноситель.
- Стяжка. Заливка готового трубопровода цементно-песчаной смесью. Толщина слоя обычно не превышает 35-50 мм.
- Напольное покрытие. Наилучшие показатели отдачи тепла показывает керамическая плитка.
Возможные способы укладки контура
Для того чтобы определить расход трубы на обустройство теплого пола, следует определиться со схемой размещения водного контура. Основная задача планирования раскладки – обеспечение равномерного обогрева с учетом холодных и неотапливаемых зон помещения.
Возможны следующие варианты раскладки: змейкой, двойной змейкой и улиткой. При выборе схемы надо учитывать размеры, конфигурацию помещения и расположение наружных стен
Змейка
Теплоноситель подается к системе вдоль стены, проходит по змеевику и возвращается к распределительному коллектору. В этом случае половина помещения прогревается горячей водой, а остаток – охлажденной.
При укладке змейкой невозможно добиться равномерности обогрева – разница температур может достигать 10 °С. Метод применим в узких помещениях.
Схема угловой змейки оптимально подходит, если необходимо максимально утеплить холодную зону у торцевой стены или в прихожей
Двойная змейка позволяет достичь более мягкого перехода температур. Прямой и обратный контур идет параллельно друг другу.
Улитка или спираль
Это считается оптимальной схемой, обеспечивающей равномерность нагрева напольного покрытия. Прямые и обратные ветки укладываются попеременно.
Дополнительный плюс «ракушки» – монтаж нагревательного контура с плавным поворотом загиба. Этот способ актуален при работе с трубами недостаточной гибкости
У нас на сайте есть другая статья, в которой мы детально рассмотрели монтажные схемы укладки теплого пола и привели рекомендации по выбору оптимального варианта в зависимости от особенностей конкретного помещения.
Какой способ укладки стоит выбрать
В больших помещениях, которые имеют ровную квадратную или прямоугольную форму рекомендуется использовать способ укладки «улитка», таким образом, большое помещение всегда будет теплым и уютным.
Если помещение длинное или маленькое, то рекомендуется использовать «змейку».
Шаг укладки
Для того, чтобы ступни человека не ощущали разницу между участками пола, необходимо придерживаться определенной длинны между трубами, у края эта длинна должна быть примерно 10 см, далее – с разницей в 5 см., например, 15 см., 20 см, 25 см.
Расстояние между трубами не должно превышать 30 см., иначе ходить по такому полу будет просто неприятно.
Монтаж
Чтобы установить ИК пленочный пол, надо выполнить ряд последовательных действий:
- В первую очередь необходимо разработать проект и произвести все необходимые расчеты.
- Обзавестись всеми нужными материалами и инструментами.
- Произвести монтаж ИК пола.
- Запустить систему и проверить функционирование.
- Произвести чистовую отделку.
Расчёт площади
Главное отличительное свойство инфракрасного пленочного пола в том, что он не устанавливается под мебель. Поэтому производя расчет количества материала, которое потребуется и выбрав место размещения пленки, надо вычесть тот участок, где пленка не будет прокладываться.
Осуществляя расчет обогреваемой площади, учитывайте, что ИК пленка укладывается на расстоянии 100 мм и более к любой вертикальной поверхности.
Когда размер нужной площади выявлен, следующим шагом становится расчет мощности.
Мощность пленки | 150 Вт/м² | 220 Вт/м² |
Основной источник отопления | Не менее 95 % площади | Не менее 70 % площади |
Дополнительный источник отопления | Не менее 60 % площади | Не менее 40 % площади |
Тип напольного покрытия | ламинат, линолеум, ковролин | паркет, ковролин |
Расчет энергопотребления
Сумма затрачиваемых средств на отопление инфракрасным полом высчитывается, исходя из тарифа на электроэнергию в вашей местности.
Установка терморегулятора позволяет сократить расходы на ИК тёплый пол примерно на 35 %.
Расчет мощности
Если площадь помещения, которое планируется обогреваться пленочным полом, очень большая — для монтажа такой системы понадобится несколько комплектов ИК пленки. В такой ситуации нужно суммировать их мощность.
Использование нескольких комплектов ИК плёнки Pобщ = P1+P2+…+Pi Использование части комплекта Pобщ=1,10*L
где, Pобщ — общая мощность пленочного пола, Вт; P1…Pi — мощность отдельно взятого комплекта пленки, Вт; L — длина инфракрасной пленки, которая используется при монтаже, м; 1,10 — коэффициент пересчета мощности пленочного пола.
Расчет количества терморегуляторов
Главное предназначение терморегулятора для инфракрасного теплого пола — регулирование степени обогрева.
Если вы подключаете сразу несколько комплектов пленочного пола, то нужны сразу несколько термостатов , поскольку мощность, которую потребляет теплый пол, суммируется.
Устанавливать терморегулятор рекомендуется на высоте от 15-20 см, над уровнем чистового покрытия.
Терморегулятор лучше размещать на стене, которая перпендикулярна направлению расположения полос.
Выделяется два способа подключения:
- Зонирование и подсоединение каждой зоны к отдельному термостату .
- Подсоединить твердотельное реле или магнитный пускатель. Осуществлять такое подключение самостоятельно нельзя, здесь нужны знания и навыки электрика.
Производим расчеты
Чтобы рассчитать количество или метраж необходимых труб, необходимо сначала выбрать подходящую схему укладки. Самыми распространенными считаются «змейка» и «спираль».
Схемы укладки
Первый вариант может иметь две разновидности. В первом случае труба укладывается змейкой.
Обратите внимание! «Змейка» позволяет немного сэкономить на трубах, но при этом нагрев комнаты будет неравномерным. Сначала нагреется пол с одной стороны, и постепенно тепло будет продвигаться дальше. К тому же вода, продвигаясь по трубам, будет остывать
Это значит, что с одной стороны пол будет всегда чуть прохладнее
К тому же вода, продвигаясь по трубам, будет остывать. Это значит, что с одной стороны пол будет всегда чуть прохладнее.
Змейка
Более эффективная укладка – это двойная спираль. В этом случае трубы укладываются парой, та по которой поступает горячая вода, и та по которой будет отводиться остывший теплоноситель. Такой способ позволяет нагревать пол по всей комнате до одинаковых температур.
Обратите внимание! При укладке труб по системе «спираль» нагрев комнаты будет происходить с ее краев к середине. Такой метод считается наиболее эффективным
Спираль
Какой бы способ не был выбран, чтобы правильно рассчитать метраж необходимых труб, нужно начертить схему. На бумаге в масштабе рисуется будущая система. Наносятся контуры комнаты и линии, по которым в дальнейшем будут укладываться трубы. При этом нужно учитывать расположение крупных элементов мебели, под ними укладывать теплый пол не рекомендуется. Также стоит учесть, что укладывать трубы нужно с отступом от стен не менее 20 см.
Для правильного расчета необходимо знать еще один параметр – это расстояние между трубами или шаг. Этот параметр будет зависеть от диаметра и теплопроводности труб, а также от температуры подаваемого теплоносителя. Первые два показателя можно узнать в магазине, где будут приобретаться трубы. Второй показатель будет зависеть от используемого котла. Также выбор шага определяется от необходимой температуры в комнате. Если нужно чтобы было значительно теплее, то шаг делается меньше, и наоборот.
Расчет
Делая расчеты, нельзя забывать о том, что длина одного контура не должна превышать 60‒70 метров. В противном случае эффективность системы значительно снизится.
Обратите внимание! Если площадь комнаты довольно большая, и метраж труб будет больше 70 метров, то требуется создать дополнительные контуры (один или два, в зависимости от площади). Лучше, чтобы они были одинаковой длины
Комбинированная укладка
Сделав правильный чертеж будущей системы (с учетом отступа от стен и будущей расстановки крупных элементов мебели), можно точно рассчитать необходимое количество труб. Но всегда стоит брать с запасом. При любой работе неизбежны небольшие недочеты и огрехи. Лучше сделать десятипроцентный запас, чем затем бегать по магазинам в поисках подходящей трубы.
Как рассчитать расход трубы
L=S/N*1,1, что означает следующее:
- L обозначает длину трубы;
- S – это показатель, определяющий площадь комнаты;
- N – это расстояние между петлями системы;
- 1,1 – это коэффициент, равный 10%, и обозначающий дополнительный расход трубы на повороты.
Рекомендуемые значения расхода теплоносителя и соответствующие скорости в трубах Так как оба конца контура подключаются к коллектору, располагаемому на стене, в расчет должна включаться и длина подводящего участка – отрезка, идущего от коллектора до разводки водяного теплого пола.
ЧИТАТЬ ДАЛЕЕ: Наливной пол на деревянное основание — варианты устройства и инструкции
Расчет полезной площади помещения следует производить, придерживаясь определенных правил:
- Если в комнате планируется установить массивную мебель, то под нее трубу укладывать не нужно. В противном случае не получится рассчитать оптимальный расход энергопотребления. К тому же обогрев не лучшим образом скажется и на самой мебели.
- Расстояние от контура до стен и межкомнатных перегородок должно составлять 30 см.
Монтаж водяного теплого пола
После того, как удалось рассчитать полезную площадь, можно производить основной расчет, учтя и остальные требования. Чтобы понять, сколько требуется материала, можно воспользоваться наглядным примером, в качестве которого рассматривается помещение с полезной площадью 18 м², длиной подводящего участка 5 м (если учитывать, что к нему будут подключены оба конца, то получится 10 м), а также шагом укладки, равном 15 см или 0,15 м.
Итого: 18/0,15*1,1 10=142 м.
Увеличение расстояния между петлями приводит к сокращению количества расходного материала в процессе монтажа водяного теплого пола. В целом расчет этого показателя производится согласно плану, который составляется на первоначальном этапе работ.
Расчет стоимости теплого пола
- При расстоянии, равном 10 см, этот параметр составит 10 м п.;
- Если этот показатель увеличивается до 15 см, количество расходного материала уменьшается до 6,7 м п.;
- 20 см – 5 м п.;
- 25 см – 4 м п.;
- При максимальном расстоянии в 30 см – 3,4 м п.
Тонкости расчета
В большинстве случаев, на 1 м2 расходуются 5 м трубы. При этом длина шага равна 20 см.
Однако укладывать трубы специалисты рекомендуют исходя из точных вычислений. Для этой цели потребуется формула L=S/N*1,1, где:
- S представляет площадь участка;
- N обозначает шаг укладки;
- 1,1 – запасная труба, необходимая для создания поворотов.
Если прибавить расстояние от коллектора до пола, увеличенное в два раза, получится более точный расчет. Для большего понимания вычислений можно привести пример:
- предположим, площадь участка равна 16 м2;
- расстояние от коллектора до пола – 3,5 м;
- шаг укладки равен 0,15 м;
- следуя формуле: 16 / 0,15 х 1,1 + (3,5 х 2) = 124 м.
Увеличение расхода в зависимости от расстояния между соседними трубами представляет следующая таблица:
Шаг петли, мм | Расход трубы на 1 м2, м. п. |
100 | 10 |
150 | 6,7 |
200 | 5 |
250 | 4 |
300 | 3,4 |
Раскладка теплого пола ограничивает длину трубы до 120 м, потому как на это есть ряд причин:
- высокая температура не должна повредить покрытие пола;
- подогрев в контуре при эксплуатации (особенно при протечке) способен повредить цементную стяжку;
- разделение поверхности на несколько участков способствует эффективному обогреву.
По диаметру
Для корректного вычисления диаметра трубы потребуются следующие вычисления:
- 15кПа – давление насоса, обеспечивающего эффективный обогрев;
- длина труб равна 85 м;
- теплоноситель расходует 0,2 м³/ч.
Следовательно, производится расчет по формуле D=18* (p/L*G2) – 0,19, где:
- D обозначает диаметр трубы для теплого пола;
- L – метраж длины изделия;
- p – давление насоса;
- G – расход воды, которая циркулирует в трубах (описывается в документации);
- D=18* (15/85 × 0,22) –0,19 = 13,6 мм.
Производители выпускают трубы 16 мм – наиболее оптимальный вариант для установки системы. Подходящими схемами настройки теплового пола считаются змейка и улитка. Горячая вода при планировании – красная, холодная обозначается голубым цветом.
По длине контура
Отопительная система нуждается в создании конструкции, поддерживающей наиболее эффективное давление и циркуляцию воздуха. Поэтому предел длины водяного контура – 80, максимум 100 метров. Однако не всегда помещение соответствует расчетам, требуя собственные параметры, порой превышающие 150 м. Проблема решается легко – достаточно лишь установить несколько контуров.
При расчетах необходимо учитывать диаметр трубы и материал изготовления:
- Металлопластиковые изделия наиболее востребованы ввиду низкой стоимости и простого монтажа. В основу лёг полиэтилен с прослойкой из алюминия, которая повышает надежность конструкции. Металл обладает высокой теплопроводностью, чем и привлекает производителей, которые желают создать оптимальные условия теплообмена. При диаметре 16 мм длина контура способна достигать сотни метров.
- Полиэтиленовые конструкции не требуют дополнительного слоя, сшиваясь на молекулярном уровне. Изделие легко гнется, проявляя устойчивость к высоким температурам до 95ºC и к различным химическим растворителям. При 18 мм диаметра предел составит 120 метров.
- Полипропилен обладает высокой жесткостью и прочностью. Он не востребован на рынке и применяется преимущественно для производственных целей. Предел длины для изделия составляет 90-100 метров.
- Медные изделия обладают наивысшей теплопроводностью, за счет которой их цена является самой высокой на строительном рынке. Однако они нуждаются в профессиональной установке, так как при малейшей провинности дают течь.
- Гофротрубы изготовлены из нержавеющей стали. Максимальная длина контура равняется 120 м при диаметре 25 мм. Гофрированные трубы рекомендуют приобретать с рассчитанной заранее длиной, достаточной для одного контура. Такая покупка автоматически устраняет возможность протечки.
Большую площадь следует поделить на составляющие участки в соотношении 1: 2. То есть его ширина будет в 2 раза меньше длины. Следовательно, для того, чтобы вычислить количество участков, потребуются следующие меры:
- При шаге 15 см количество м2 для площади участка не превышает 12;
- шаг 20 см подходит для 16 м2;
- шаг 25 см – 20 м2;
- 30 см – 24 м2.
В последующем при увеличении шага на 5 см площадь соответственно увеличивается на 4 м2. Однако специалисты не рекомендуют вычислять точные значения. Во избежание протечек следует брать про запас 2 м2.
Общие сведения по результатам расчетов
1. Общий тепловой поток — Количество выделяемого тепла в помещение. Если тепловой поток меньше тепловых потерь помещения, необходимы дополнительные источники тепла, например, такие как настенные радиаторы.
2. Тепловой поток по направлению вверх — Количество выделяемого тепла в помещение с 1 квадратного метра площади по направлению вверх.
3. Тепловой поток по направлению вниз — Количество «теряемого» тепла и не участвующего в обогреве помещения. Для уменьшения данного параметра необходимо выбирать максимально эффективную теплоизоляцию под трубами ТП* (*теплого пола).
4. Суммарный удельный тепловой поток — Общее количество тепла, выделяемого системой ТП с 1 квадратного метра.
5. Суммарный тепловой поток на погонный метр — Общее количество тепла, выделяемого системой ТП с 1 погонного метра трубы.
6. Средняя температура теплоносителя — Средняя величина между расчетной температурой теплоносителя подающего трубопровода и расчетной температурой теплоносителя обратного трубопровода.
7. Максимальная температура пола — Максимальная температура поверхности пола по оси нагревательного элемента.
8. Минимальная температура пола — Минимальная температура поверхности пола по оси между трубами ТП.
9. Средняя температура пола — Слишком высокое значение данного параметра может быть дискомфортно для человека (нормируется СП 60.13330.2012). Для уменьшения данного параметра необходимо увеличить шаг труб, снизить температуру теплоносителя либо увеличить толщину слоев над трубами.
10. Длина трубы — Общая длина трубы ТП с учетом длины подводящей магистрали. При высоком значении данного параметра калькулятор рассчитает оптимальное кол-во петель и их длину.
11. Тепловая нагрузка на трубу — Суммарное количество тепловой энергии, получаемое от источников тепловой энергии, равное сумме теплопотреблений приемников тепловой энергии и потерь в тепловых сетях в единицу времени.
12. Расход теплоносителя — Массовое кол-во теплоносителя предназначенного для подачи необходимого кол-ва тепла в помещение в единицу времени.
13. Скорость движения теплоносителя — Чем выше скорость движения теплоносителя, тем выше гидравлическое сопротивление трубопровода, а также уровень шума, создаваемого теплоносителем. Рекомендуемое значение от 0.15 до 1м/с. Данный параметр можно уменьшить за счет увеличения внутреннего диаметра трубы.
14. Линейные потери давления — Снижение напора по длине трубопровода, вызванного вязкостью жидкости и шероховатостью внутренних стенок трубы. Без учета местных потерь давления. Значение не должно превышать 20000 Па. Можно уменьшить за счет увеличения внутреннего диаметра трубы.
15. Общий объем теплоносителя — Общее кол-во жидкости для заполнения внутреннего объема труб системы ТП.
Смежные нормативные документы:
- СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха»
- СП 29.13330.2011 «Полы»
- СП 71.13330.2017 «Изоляционные и отделочные покрытия»
- СП 41-102-98 «Проектирование и монтаж трубопроводов систем отопления с использованием металлополимерных труб»
- СП 41-109-2005 «Проектирование и монтаж внутренних систем водоснабжения и отопления зданий с использованием труб из «сшитого» полиэтилена»
Теплый пол расчет мощности
На определение необходимой мощности теплого пола в помещении влияет показатель теплопотерь, для точного определения которых потребуется произвести сложный теплотехнический подсчет по особой методике.
- При этом учитываются следующие факторы:
- площадь обогреваемой поверхности, общая площадь помещения;
- площадь, тип остекления;
- наличие, площадь, тип, толщина, материал и термическое сопротивление стен и иных ограждающих конструкций;
- уровень проникновения солнечных лучей в помещение;
- наличие иных источников тепла, в том числе учитывается тепло, источаемое оборудованием, различными приборами и людьми.
Методика выполнения подобных точных расчетов требует глубоких теоретических знаний и опыта, а потому теплотехнический расчет лучше доверить специалистам.
Ведь только они знают, как рассчитать мощность теплого пола водяного с наименьшей погрешностью и оптимальными параметрами
Особенно это важно при проектировании обогреваемого встроенного отопления в помещениях большой площадью с большой высотой
Укладка и эффективная эксплуатация водяного обогреваемого пола возможна лишь в помещениях с уровнем теплопотерь менее 100 Вт/м². Если теплопотери выше, необходимо принять меры по утеплению помещения с целью снижения потерь тепла.
Однако если проектный инженерный расчет стоит немалых денег, в случае с небольшими помещениями приблизительные расчеты можно провести самостоятельно, приняв 100 Вт/м² за усредненную величину и отправную точку в дальнейших расчетах.
- При этом для частного дома принято корректировать усредненный показатель потерь тепла исходя из общей площади строения:
- 120 Вт/м² – при площади дома до 150 м²;
- 100 Вт/м² – при площади 150-300 м²;
- 90 Вт/м² – при площади 300-500 м².
Нагрузка на систему
- На то, какая будет мощность водяного теплого пола на квадратный метр, влияют такие параметры, создающие нагрузку на систему, определяющие гидравлическое сопротивление и уровень теплоотдачи, как:
- материал, из которого изготовлены трубы;
- схема укладки контуров;
- длина каждого контура;
- диаметр;
- расстояние между нитками труб.
Характеристика:
Трубы могут быть медными (отличаются наилучшими теплотехническими и эксплуатационными характеристиками, однако обходятся не дешево и требуют специальных навыков, а также инструмента).
Основных схем укладки контура два: змейкой и улиткой. Первый вариант наиболее прост, но менее эффективен, так как дает неравномерный нагрев пола. Второй более сложен в реализации, но эффективность прогрева на порядок выше.
Площадь, отапливаемая одним контуром, не должна превышать 20 м². Если отапливаемая площадь больше, то целесообразно трубопровод разбить на 2 или более контуров, подключив их к распредколлектору с возможностью регулирования нагрева участков пола.
Общая длина труб одного контура должна быть не больше 90 м. При этом, чем больший выбран диаметр, тем больше расстояние между нитками труб. Как правило, не применяются трубы с диаметром более 16 мм.
Каждый параметр имеет свои коэффициенты для дальнейших расчетов, посмотреть которые можно в справочниках.
Расчет мощности теплоотдачи: калькулятор
Чтобы определить мощность водяного пола, необходимо найти произведение общей площади помещения (м²), разницы температур подачи и обратно поступающей жидкости, и коэффициентами, зависящими от материала труб, напольного покрытия (дерево, линолеум, плитка и т.д.), других элементов системы.
Мощность водяного теплого пола на 1 м², или теплоотдача, не должна превышать уровень теплопотерь, однако не более чем на 25%. В случае слишком малого или слишком большого значения, необходимо произвести перерасчет, выбрав иной диаметр труб и расстояние между нитями контура.
Показатель мощности тем выше, чем больше диаметр выбранных труб, и тем ниже, чем больший шаг задан между нитками. Для экономии времени можно воспользоваться электронными калькуляторами расчета водяного пола или скачать специальную программу.