Как сделать гидравлический расчет системы отопления – теория и практика

Цели гидравлического расчета

Цели гидравлического расчета заключаются в следующем:

  1. Подобрать оптимальные диаметры трубопроводов.
  2. Увязать давления в отдельных ветвях сети.
  3. Выбрать циркуляционный насос для системы отопления.

Раскроем подробнее каждый из этих пунктов.

1. Подбор диаметров трубопроводов

Чем меньше диаметр трубопровода, тем больше сопротивление оказывается потоку теплоносителя из-за трения о стенки трубопровода и местных сопротивлений на поворотах и ответвлениях. Поэтому для малых расходов, как правило, берутся малые диаметры трубопроводов, для больших расходов, соответственно, большие диаметры, за счёт чего можно ограниченно отрегулировать систему.

Если система разветвлённая – есть короткая и длинная ветка, то на длинной ветке идёт большой расход, а на короткой – меньший. В этом случае короткая ветка должна выполняться из труб меньших диаметров, а длинная ветка должна выполняться из труб большего диаметра.

И, по мере уменьшения расхода, от начала к концу ветки диаметры труб должны уменьшаться так, чтобы скорость теплоносителя была примерно одинакова.

2. Увязка давлений в отдельных ветвях сети

Увязка может производиться подбором соответствующих диаметров труб или, если возможности этого способа исчерпаны, то за счёт установки регуляторов расхода давления или регулировочных вентилей на отдельных ветвях.

Частично мы, как это описано выше, можем увязать давление с помощью подбора диаметров трубопроводов. Но не всегда это удаётся сделать. Например, если берём самый маленький диаметр трубопровода на короткой ветке, а сопротивление в нём все равно недостаточно большое, тогда весь поток воды будет идти через короткую ветку, не заходя в длинную. В этом случае требуется дополнительная регулировочная арматура.

Регулировочная арматура может быть разной.

Бюджетный вариант — ставим регулировочный вентиль — т.е. вентиль с плавной регулировкой, который имеет градацию в настройке. Каждый вентиль имеет свою характеристику. При гидравлическом расчёте проектировщик смотрит, какое давление необходимо погасить, и определяется так называемая невязка давлений между длинной и короткой ветками. Тогда по характеристике вентиля проектировщик определяет, на сколько оборотов этот вентиль, от полностью закрытого положения, надо будет открыть. Например, на 1, на 1.5 или на 2 оборота. В зависимости от степени открытия вентиля будет добавляться разное сопротивление.

Более дорогой и сложный вариант регулировочной арматуры — т.н. регуляторы давления и регуляторы расхода. Это устройства, на которых мы задаём необходимый расход или необходимый перепад давлений, т.е. падение давлений на этой ветке. В этом случае устройства сами контролируют работу системы и, если расход не соответствует требуемому уровню, то они открывают сечение, и расход увеличивается. Если расход слишком большой, то сечение перекрывается. Аналогично происходит и с давлением.

Если все потребители после ночного понижения теплоотдачи одновременно открыли утром свои отопительные приборы, то теплоноситель попытается, в первую очередь, поступать в ближние к тепловому пункту приборы, а до дальних дойдет спустя часы. Тогда сработает регулятор давления, прикрывая ближайшие ветки и, тем самым, обеспечит равномерное поступление теплоносителя во все ветки.

3. Подбор циркуляционного насоса по давлению (напору) и по расходу (подаче)

Расчетные потери давления в главном циркуляционном кольце (с небольшим запасом) определят напор для циркуляционного насоса. А расчетный расход насоса – это суммарный расход теплоносителя по всем ветвям системы. Насос подбирается по напору и по расходу.

Если в системе стоит несколько циркуляционных насосов, то в случае их последовательного монтажа у них суммируется напор, а расход будет общим. Если насосы работают параллельно, то у них суммируется расход, а напор будет одинаковым.

Скорость потока теплоносителя.

Гидравлический расчёт трубопроводов системы отопления

Как видно из названия темы в расчёте участвуют такие параметры, связанные с гидравликой, как расход теплоносителя, скорость потока теплоносителя, гидравлическое сопротивление трубопроводов и арматуры. При этом между указанными параметрами существует полная взаимосвязь.

Например при увеличении скорости теплоносителя увеличивается гидравлическое сопротивление трубопровода. При увеличении расхода теплоносителя через трубопровод определённого диаметра скорость теплоносителя возрастает и естественно растёт гидравлическое сопротивление при этом изменяя диаметр в большую сторону скорость и гидравлическое сопротивление снижаются. Анализируя эти взаимосвязи гидравлический расчёт превращается в своего рода анализ параметров для обеспечения надёжной и эффективной работы системы и снижения затрат на материалы.

Система отопления состоит из четырёх основных компонентов это трубопроводы, отопительные приборы, теплогенератор, регулирующая и запорная арматура. Все элементы системы имеют свои характеристики гидравлического сопротивления и должны учитываться при расчёте. При этом, как было сказано выше, гидравлические характеристики не являются постоянными. Производители отопительного оборудования и материалов обычно приводят данные по гидравлическим характеристикам (удельные потери давления) на производимое ими материалы или оборудование.

Номограмма для гидравлического расчёта полипропиленовых трубопроводов производства фирмы FIRAT (Фират)

Удельные потери давления (потеря напора) трубопровода указано для 1 м.п. трубы.

Проанализировав номограмму вы более наглядно увидите ранее указанные взаимосвязи между параметрами.

Итак суть гидравлического расчёта мы определили.

Теперь пройдёмся отдельно по каждому из параметров.

Расход теплоносителя

Расход теплоносителя, для более широкого понимания количество теплоносителя, напрямую зависит от тепловой нагрузки которую теплоноситель должен переместить от теплогенератора к отопительному прибору.

Конкретно для гидравлического расчёта требуется определить расход теплоносителя на заданном расчётном участке. Что такое расчётный участок. Расчетным участком трубопровода принимается участок постоянного диаметра с неизменным расходом теплоносителя. Например если в состав ветки входят десять радиаторов ( условно каждый прибор мощностью 1 кВт) а общий расход теплоносителя рассчитан на перенос теплоносителем тепловой энергии равной 10 кВт. То первым участком будет участок от теплогенератора до первого в ветке радиатора (при условии что по всему участку постоянный диаметр) с расходом теплоносителя на перенос 10 кВт. Второй участок будет находится между первым и вторым радиатором с расходом на перенос тепловой энергии 9 кВт и так далее вплоть до последнего радиатора. Рассчитывается гидравлическое сопротивление как подающего трубопровода так и обратного.

Расход теплоносителя ( кг/час) для участка рассчитывается по формуле:

Qуч – тепловая нагрузка участка Вт. Например для вышеуказанного примера тепловая нагрузка первого участка равна 10 кВт или 1000 Вт.

с = 4,2 кДж/(кг·°С) – удельная теплоемкость воды

tг – расчетная температура горячего теплоносителя в системе отопления, °С

tо – расчетная температура охлажденного теплоносителя в системе отопления, °С.

Скорость потока теплоносителя.

Минимальный порог скорости теплоносителя рекомендуют принимать в пределах 0,2 – 0,25 м/с. На меньших скоростях начинается процесс выделения избыточного воздуха содержащегося в теплоносителе что может приводить к образованию воздушных пробок и как следствие полный либо частичный отказ работы системы отопления. Верхний порог скорости теплоносителя лежит в диапазоне 0,6 – 1,5 м/с. Соблюдение верхнего порога скорости позволяет избежать возникновение гидравлических шумов в трубопроводах. На практике было определён оптимальный диапазон скорости 0,3 – 0,7 м/с .

Более точный диапазон рекомендованной скорости теплоносителя зависит от материала трубопроводов применяемых в системе отопления а точнее от коэффициента шероховатости внутренней поверхности трубопроводов . Например для стальных трубопроводов лучше придерживаться скорости теплоносителя от 0,25 до 0,5 м/с для медных и полимерных (полипропиленовые, полиэтиленовые, металлопластиковые трубопроводы) от 0,25 до 0,7 м/с либо воспользоваться рекомендациями производителя при их наличии.

Скорость потока теплоносителя Скорость потока теплоносителя. Гидравлический расчёт трубопроводов системы отопления Как видно из названия темы в расчёте участвуют такие параметры, связанные с гидравликой, как расход

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока  приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:

 При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).

Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:

Как работать в EXCEL

Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.

Ввод исходных данных

Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.

ЯчейкаВеличинаЗначение, обозначение, единица выражения

D445,000Расход воды G в т/час
D595,0Температура на входе tвх в °C
D670,0Температура на выходе tвых в °C
D7100,0Внутренний диаметр d, мм
D8100,000Длина, L в м
D91,000Эквивалентная шероховатость труб ∆ в мм
D101,89Сумма коэф. местных сопротивлений — Σ(ξ)

Пояснения:

  • значение в D9 берётся из справочника;
  • значение в D10 характеризует сопротивления в местах сварных швов.

Формулы и алгоритмы

Выбираем ячейки и вводим алгоритм, а также формулы теоретической гидравлики.

ЯчейкаАлгоритмФормулаРезультатЗначение результата

D12!ERROR! D5 does not contain a number or expressiontср=(tвх+tвых)/282,5Средняя температура воды tср в °C
D13!ERROR! D12 does not contain a number or expressionn=0,0178/(1+0,0337*tср+0,000221*tср2)0,003368Кинематический коэф. вязкости воды — n, cм2/с при tср
D14!ERROR! D12 does not contain a number or expressionρ=(-0,003*tср2-0,1511*tср+1003, 1)/10000,970Средняя плотность воды ρ,т/м3 при tср
D15!ERROR! D4 does not contain a number or expressionG’=G*1000/(ρ*60)773,024Расход воды G’, л/мин
D16!ERROR! D4 does not contain a number or expressionv=4*G:(ρ*π*(d:1000)2*3600)1,640Скорость воды v, м/с
D17!ERROR! D16 does not contain a number or expressionRe=v*d*10/n487001,4Число Рейнольдса Re
D18!ERROR! Cell D17 does not existλ=64/Re при Re≤2320
λ=0,0000147*Re при 2320≤Re≤4000
λ=0,11*(68/Re+∆/d)0,25 при Re≥4000
0,035Коэффициент гидравлического трения λ
D19!ERROR! Cell D18 does not existR=λ*v2*ρ*100/(2*9,81*d)0,004645Удельные потери давления на трение R, кг/(см2*м)
D20!ERROR! Cell D19 does not existdPтр=R*L0,464485Потери давления на трение dPтр, кг/см2
D21!ERROR! Cell D20 does not existdPтр=dPтр*9,81*1000045565,9и Па соответственно
D20
D22!ERROR! D10 does not contain a number or expressiondPмс=Σ(ξ)*v2*ρ/(2*9,81*10)0,025150Потери давления в местных сопротивлениях dPмс в кг/см2
D23!ERROR! Cell D22 does not existdPтр=dPмс*9,81*100002467,2и Па соответственно D22
D24!ERROR! Cell D20 does not existdP=dPтр+dPмс0,489634Расчетные потери давления dP, кг/см2
D25!ERROR! Cell D24 does not existdP=dP*9,81*1000048033,1и Па соответственно D24
D26!ERROR! Cell D25 does not existS=dP/G223,720Характеристика сопротивления S, Па/(т/ч)2

Пояснения:

  • значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
  • ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».

Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.

Оформление результатов

Авторское цветовое решение несёт функциональную нагрузку:

  • Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
  • Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
  • Жёлтые ячейки — вспомогательные предварительные расчёты.
  • Светло-жёлтые ячейки — результаты расчётов.
  • Шрифты:
    • синий — исходные данные;
    • чёрный — промежуточные/неглавные результаты;
    • красный — главные и окончательные результаты гидравлического расчёта.

Результаты в таблице Эксель

Пример от Александра Воробьёва

Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.

Исходные данные:

  • длина трубы100 метров;
  • ø108 мм;
  • толщина стенки 4 мм.

Таблица результатов расчёта местных сопротивлений

Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.

Энциклопедия сантехника Гидравлический расчет в трехмерном пространстве

Гидравлический расчет в трехмерном пространстве

Auto-Snab 3D (дата версии: 17.09.2016 г.) Работает на всех операционных системах Windows

Программное обеспечение позволяет делать гидравлические расчеты в трехмерном пространстве.

В трехмерном пространстве вводите схемы системы водоснабжения и отопления – программа находит расходы, давления и температуры в цепях в зависимости от физических законов.

Видео: Презентация нового программного обеспечения по гидравлическому расчету в трехмерном пространстве. Первое видео, о том, как устроен интерфейс и управление в программе.

Купить программу

infobos.ru

Выбор основного контура

Гидравлическая стрелка отделяет котловые и отопительные контура

Здесь необходимо рассматривать отдельно две схемы — однотрубную и двухтрубную. В первом случае расчет нужно вести через самый нагруженный стояк, где установлено большое количество отопительных приборов и запорной арматуры.

Во втором случае выбирается самый загруженный контур. Именно на его основе и нужно делать подсчет. Все остальные контуры будет иметь гидравлическое сопротивление гораздо ниже.

В том случае, если рассматривается горизонтальная развязка труб, то выбирается самое загруженное кольцо нижнего этажа. Под загруженностью понимают тепловую нагрузку.

Расчет расширительного бака

Чтобы произвести расчет расширительного бака для закрытой системы отопления, необходимо выяснить, насколько увеличивается объем жидкости при ее нагреве от комнатной температуры +20 ºС до рабочей, находящейся в пределах 50—80 ºС. Эта задача тоже не из простых, но ее можно решить другим способом.

Вполне корректным считается принимать объем бака в размере десятой части от всего количества воды в системе, включая радиаторы и водяную рубашку котла. Поэтому снова открываем паспорта оборудования и находим в них вместительность 1 секции батареи и котлового бака.

Далее, расчет объема теплоносителя в системе отопления выполняется по простой схеме: вычисляется площадь поперечного сечения трубы каждого диаметра и умножается на ее длину. Полученные значения суммируются, к ним прибавляются паспортные данные, а потом от результата берется десятая часть. То есть, если во всей системе 150 л воды, то вместительность расширительного бака должна составлять 15 л.

Гидравлическая увязка

Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.

Гидравлическая увязка системы производится на основании:

  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

S — произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Порядок расчета гидравлических параметров отопления

Отопление на плане дома

На первом этапе вычисления параметров системы отопления следует составить предварительную схему, на которой указывается расположение всех компонентов. Таким образом определяется общая протяженность магистралей, рассчитывается количество радиаторов, объем воды, а также характеристики отопительных приборов.

Как сделать гидравлический расчет отопления, не имея опыта подобных вычислений? Следует помнить, что для автономного теплоснабжения важно правильно подобрать диаметр труб. Именно с выполнения этого этапа и следует начать вычисления

Определение оптимального диаметра труб

Виды труб для отопления

Самый упрощенный гидравлический расчет системы отопления включает в себя только вычисление сечения трубопроводов. Нередко при проектировании небольших систем обходятся и без него. Для этого берут следующие параметры диаметров труб в зависимости от типа теплоснабжения:

  • Открытая схема с гравитационной циркуляцией. Трубы диаметром от 30 до 40 мм. Такое большего сечение необходимо для уменьшения потерь при трении воды о внутреннюю поверхность магистралей;
  • Закрытая система с принудительной циркуляцией. Сечение трубопроводов варьируется от 8 до 24 мм. Чем оно меньше, тем больше давление будет в системе и соответственно – уменьшится общий объем теплоносителя. Но при этом возрастут гидравлические потери.

Если в наличии есть специализированная программа для гидравлического расчета системы отопления – достаточно заполнить данные о технических характеристиках котла и перенести отопительную схему. Программный комплект определит оптимальный диаметр труб.

Таблица выбора внутреннего диаметра трубопроводов

Полученные данные можно проверить самостоятельно. Порядок выполнения гидравлического расчета двухтрубной системы отопления вручную при вычислении диаметра трубопроводов заключается в вычислении следующих параметров:

  • V – скорость движения воды. Она должна быть в пределах от 0,3- до 0,6 м/с. Определятся производительностью насосного оборудования;
  • Q – тепловой поток. Это отношение количества тепла, проходящего за определенный промежуток времени – 1 секунду;
  • G – расход воды. Измеряется в кг/час. Напрямую зависит от диаметра трубопровода.

В дальнейшем для выполнения гидравлического расчета систем водяного отопления понадобиться узнать общий объем отапливаемого помещения — м³. Предположим, что это значение для одной комнаты равно 50 м³. Зная мощность котла отопления (24 кВт) вычисляем итоговый тепловой поток:

Q=50/24=2,083 кВт

таблица расхода воды в зависимости от диаметра трубы

Затем для выбора оптимального диаметра труб нужно воспользоваться данными таблицы, составленными при выполнении гидравлического расчета системы отопления в Excel.

В этом случае оптимальный внутренний диаметр трубы на конкретном участке системы составит 10 мм.

В дальнейшем для выполнения примера гидравлического расчета системы отопления можно узнать ориентировочный расход воды, который засвистит от диаметра трубы.

Учет местных сопротивлений в магистрали

Пример гидравлического расчета отопления

Не менее важным этапом является расчет гидравлического сопротивления отопительной системы на каждом участке магистрали. Для этого вся схема теплоснабжения условно разделяется на несколько зон. Лучше всего сделать вычисления для каждой комнаты в доме.

В качестве исходных данных для внесения в программу для гидравлического расчета системы отопления понадобятся следующие величины:

  • Протяженность трубы на участке, м.п;
  • Диаметр магистрали. Порядок вычислений описан выше;
  • Требуемая скорость теплоносителя. Также зависит от диаметра трубы и мощности циркуляционного насоса;
  • Справочные данные, характерные для каждого типа материала изготовления – коэффициент трения (λ), потери на трении (ΔР);
  • Плотность воды при температуре +80°С составит 971,8 кг/м³.

При проведении этой работы нужно помнить, что чем меньше выбранный участок отопления, тем точнее будут данные общих параметров системы. Так как сделать гидравлический расчет теплоснабжения с первого раза будет затруднительно – рекомендуется провести ряд вычислений для определенного промежутка трубопровода. Желательно, чтобы в нем было как можно меньше дополнительных приборов – радиаторов, запорной арматуры и т.д.

Расход теплоносителя

Расход теплоносителя

Чтобы показать, как производится гидравлический расчет отопления, возьмем для примера простую отопительную схему, в которую входят отопительный котел и радиаторы отопления с киловаттным потреблением тепла. И таких радиаторов в системе 10 штук.

Здесь важно правильно разбить всю схему на участки, и при этом точно придерживаться одного правила — на каждом участке диаметр труб не должен меняться. Итак, первый участок — это трубопровод от котла до первого отопительного прибора

Второй участок — это трубопровод между первым и вторым радиатором. И так далее

Итак, первый участок — это трубопровод от котла до первого отопительного прибора. Второй участок — это трубопровод между первым и вторым радиатором. И так далее.

Как происходит теплоотдача, и каким образом понижается температура теплоносителя? Попадая в первый радиатор, теплоноситель отдает часть тепла, которое снижается на 1 киловатт. Именно на первом участке гидравлический расчет производится под 10 киловатт. А вот на втором участке уже под 9. И так далее с понижением.

Существует формула, по которой можно рассчитать расход теплоносителя:

G = (3,6 х Qуч) / (с х (tr-to))

Qуч — это расчетная тепловая нагрузка участка. В нашем примере для первого участка она равна 10 кВт, для второго 9.

с — удельная теплоемкость воды, показатель постоянный и равный 4,2 кДж/кг х С;

tr — температура теплоносителя при входе на участок;

to — температура теплоносителя при выходе с участка.

Расчёт параметров теплоносителя

Количество теплоносителя в 1 м трубы в зависимости от диаметра

Расчет теплоносителя сводится к определению следующих показателей:

  • скорость движения водных масс по трубопроводу с заданными параметрам;
  • их средняя температура;
  • расход носителя, связанный с требованиями к производительности отопительного оборудования.

Известные формулы расчета параметров теплоносителя (с учетом гидравлики) достаточно сложны и неудобны в практическом применении. В онлайн калькуляторах используется упрощенный подход, позволяющий получить результат с допустимой для этого способа погрешностью

Тем не менее перед началом монтажа важно побеспокоиться о том, чтобы приобрести насос с показателями не ниже расчетных. Лишь в этом случае появляется уверенность в том, что требования к системе по этому критерию выполнены в полной мере и что она способна обогреть помещение до комфортных температур

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий