Пластинчатый теплообменник: принцип действия, схема и особенности работы аппарата

Классификация

Классификация теплообменников предусматривает их деление на такие виды:

  • пластинчатые;
  • трубчатые.

Пластинчатые устройства включают набор пластин с волнистыми каналами со штамповкой и поверхностями, предназначенными для циркуляции жидкостей. Пластины соединены при помощи прорезиненных прокладок и стяжек. Преимущества подобных устройств – легкость в применении и компактность.

Пластинчатые теплообменники находят все более широкое применение. Сфера их использования не ограничивается только промышленным оборудованием, возможен также монтаж этих устройств в жилых домах для монтажа отопительных систем.

Пластинчатые теплообменники классифицируются на группы:

  • неразборные (они же сварные и паяные);
  • полусварные;
  • разборные.

Разборные устройства наиболее популярны. В них пластины разделены при помощи резиновых уплотнителей. Установка не занимает много времени, а эксплуатация не вызывает трудностей.

Классический вариант пластинчатых теплообменников имеет входные и выходные патрубки на поверхности передней плиты. Некоторые устройства имеют патрубки и на передней, и на задней панелях. Рабочие среды подсоединяются к патрубкам посредством фланцевых, резьбовых, стальных соединений. Некоторые модели имеют меньшее количество патрубков, тогда теплоносители подсоединяются непосредственно к плите.

Трубчатые теплообменники включают трубы малого диаметра, вваренные в другие трубы. Достоинствами устройства считается применение в условиях повышения давления.

По критерию способа теплообмена техника подразделяется на смесительную и поверхностную. Устройства смесительного типа передают тепло при плотномконтактировании носителей. Поверхностные теплообменники содержат два контура, в которых происходит перемещение сред с отличными температурами. Обмен теплом между ними возможен через поверхностные элементы пластин, стенок, листов или труб, которые выполнены из теплопроводящих материалов (нержавеющей или высокоуглеродистой стали, сплавов цветных металлов). Этот тип оборудования применяется в жилищно-коммунальном хозяйстве, промышленных предприятиях и в организации малого бизнеса.

Поверхностные теплообменники делятся виды: рекуперативные и регенеративные. Рекуперативные теплообменники характеризуются константным обменом тепла посредством стенок контуров при однонаправленном движении носителей. В регенеративных устройствах происходит поочередный контакт носителей с теплообменивающей поверхностью.

Рекуперативные теплообменники тоже классифицируются:

  1. Погружные. Принцип работы предусматривает движение одного теплоносителя по змеевику, который погружен в бак, содержащий второй жидкий теплоноситель. Модель отличается удобством в применении, характеризуется оптимальной стоимостью.
  2. Оросительные. Сфера применения – как конденсаторы в системах охлаждения. Теплобменники выглядят как змеевики из горизонтальных труб, которые размещены в вертикальной плоскости. У каждого ряда труб есть желоб, по которому на них стекает вода пониженной температуры. Вода, которая не испарилась, возвращается в систему благодаря насосу.
  3. Витые. Представляют собой систему труб, намотанных на сердечник. Компактны и высокоэффективны.
  4. Спиральные. Для оборудования характерен вид двух спиральных каналов, которыми обвита центральная перегородка. Предназначены для охлаждения и нагрева вязких жидкостей.
  5. Кожухотрубные. Трубные решетки присоединены к кожуху посредством сварки. В них закрепляются трубы. Крепление их происходит плотно при помощи развальцовки. Решетки закрыты крышками на шпильках, болтах и прокладках. Кожух включает штуцера (патрубки). Принцип работы заключен в циркуляции носителя тепла в межтрубном пространстве и по трубам. Увеличение теплоотдачи происходит при помощи оребрения.
  6. Секционные – последовательность секций, которые представляют собой кожухотрубные устройства.
  7. Пластинчатые. Включают набор пластин с волнистыми поверхностями со штамповкой и каналами для движения жидкостей. Возможна работа только при пониженном давлении.

Кожухотрубный теплообменник

Разновидности поверхностных теплообменников

Простейший т/о – труба в трубе. Холодная трубка с водой проходит в трубе большего сечения, заполненной горячим агентом. При этом поверхность внутренней трубки нагревается и передает тепло воде. Так работают бойлеры. Если трубок много и собраны они в пучок, то получается кожухотрубный теплообменник. Аппараты с трубным пучком, закрепленном с торцов решетками, распространены в промышленности и применяются для бытовой водоподготовки.

Витые теплообменники представляют змеевики, навитые в корпусе. Межтрубное пространство заполняется другим потоком. Аппаратура применяется при высоком давлении одного из агентов.

Двухтрубные теплообменники применяются для передачи тепла в фазах газ-жидкость. Аппараты могут работать под давлением с высокой теплопередачей.

Спиральный т/о

Спиральные теплообменники представляют бочку, в которой лентой-спиралью расположен плоский лабиринт с внутренней полостью. По спирали движется горячий агент, омываемый холодной водой. Конструкция сложная в изготовлении. Но это единственный вид аппаратов для теплообмена агента, содержащего взвеси, пульпу. Откидывающиеся с обеих сторон крышки позволяют легко чистить зазоры.

Пластинчатый теплообменник представляет особую конструкцию греющих труб, собранных в виде плоского элемента их оребренных труб и многоходовым движением воды. Пластины напоминают гармошки. Их недостаток – забиваются накипью при плохой водоподготовке.

Зачем нужен теплообменник в системе отопления? Представьте, что в трубах вода 900. Это приведет к разрыву пластиковых труб, ожогам. В каждом тепловом узле имеется система т/о, позволяющая поддерживать температурные параметры.

Теплообменник и его виды

Теплообменник – это специальный аппарат, который предназначен для обмена тепла между двумя рабочими средами с различной температурой. Существует множество типов и конструкций. По принципу работы теплообменные устройства разделяются на регенеративные и рекуперативные.

Рекуперативный тип отличается тем, что процесс обмена происходит между теплопередающими пластинами. Потоки изолированы и разделены.

Регенеративный тип характеризуется тем, что обмен осуществляется на одной поверхности, с которой теплоносители контактируют поочередно.

Из рекуперативных наиболее распространенными являются:

  • Кожухотрубные – имеют цилиндрическую форму, состоят из кожуха и трубного пучка.
  • Пластинчатые – состоят из тонких теплопередающих пластин и резиновых уплотнений для герметичности. Имеют разборную конструкцию, что значительно упрощает обслуживание в процессе эксплуатации.
  • Витые – конструкция состоит из спиральной трубки, внутри которой движутся рабочие среды.
  • Спиральные – по принципу работы схожи с пластинчатыми, но более устойчивы к воздействию высокого давления и температуры. Имеют сварную спиральную конструкцию.

Рекуперативные наиболее востребованы в промышленности, жилищно-коммунальном хозяйстве и производстве.

  • Доставка по России, Казахстану и другим странам СНГ от 3 дней
  • Даем дилерские цены заводов-производителей на 30% ниже рыночных
  • Подписываем официальный договор – гарантия до 3 лет
  • Собственное производство пластинчатых видов – изготовим за 3 дня
  • Профессиональный подбор оборудования

Конструкция пластинчатого устройства

Основой конструкции пластинчатого вида агрегатов являются теплопередающие пластины и уплотнения, которые стянуты болтами между прижимными плитами. Основной материал из которого изготавливают пластины AISI 316 (нержавеющая сталь) толщиной от 0,4 до 1 мм. Для специальных применений возможно изготовление из титана и других сплавов.

На основе синтетического каучука производятся уплотнения, которые препятствуют протечкам и служат для герметичности агрегата.

  • Нитрильный каучук (NBR): для вязкой или водной рабочей среды;
  • Этилен-пропиленовый каучук (EPDM): для химических веществ без содержания минеральных масел и жиров.
  • Фтор-каучук (VITON / FKM): специальный материал, высоко устойчивый к химическим и агрессивным теплоносителям.
  • материал пластин: нержавеющая сталь AISI304, AISI316, 254SMO, Hastelloy, титан, палладий и др.
  • температура сред не более 180°C
  • максимальное рабочее давление до 15 бар
  • площадь поверхности теплообмена от 0,1 кв. м до 2100 кв. м
  • количество пластин зависит от требуемой мощности

Принцип работы

ЖКХ

В жилищно-коммунальном хозяйстве в основном применяют пластинчатые для подогрева воды в системе отопления и горячего водоснабжения, вентиляции, нагрева воды в бассейнах.

ПИЩЕВАЯ ПРОМЫШЛЕННОСТЬ

В пищевой промышленности агрегаты нашего типа нашли применение в системах пастеризации молока и молочных продуктов, в системах охлаждения и пастеризации пивного сусла, вина и других напитков.

МЕТАЛЛУРГИЯ

В металлургической промышленности их применяют для охлаждения оборудования и рабочих сред. Например, жидкости в станках и печах для плавки.

НЕФТЕГАЗОВАЯ ПРОМЫШЛЕННОСТЬ

В нефтегазовой отрасли теплообменное оборудование используют для охлаждения жидких и газообразных сред, в установках химподготовки.

МОРСКАЯ ПРОМЫШЛЕННОСТЬ

На судах теплообменные устройства служат для охлаждения двигателя, масел и основных узлов с применением морской воды.

Разборные пластинчатые виды

Преимущества

  • минимум затрат на производство
  • минимальная стоимость монтажа
  • производительность подлежит регулировке
  • простота эксплуатации и ремонта
  • низкие расходы на эксплуатацию
  • время простоя минимально
  • небольшая энергоемкость

Применение

  • отопительные системы
  • жилые здания и помещения
  • бассейны
  • холодильные и климатические аппараты
  • системы снабжения горячей водой
  • тепловые пункты
Паяные виды

Преимущества

  • минимальная стоимость комплекта
  • небольшие габариты и площадь размещения
  • максимальная эффективность
  • высокая скорость установки и сборки
  • надежность и эффективность
  • минимальная цена монтажа

Применение

  • системы кондиционирования и вентиляции
  • жилые здания и помещения
  • бассейны
  • холодильная техника
  • компрессорные и турбинные аппараты
  • промышленные установки


Инженеры компании помогут Вам осуществить правильный расчет для Вашего объекта и подобрать наиболее подходящую модель.

Свяжитесь с нами любым удобным для Вас способом и получите расчет в течение 20 минут.Заполните форму в правой части страницы или позвоните по номеру +7 (804) 333-70-94 и проконсультируйтесь с нашим специалистом.

Инструкция по эксплуатации

К каждому заводскому пластинчатому теплообменнику обязательно прилагается подробная инструкция по эксплуатации, содержащая всю необходимую информацию. Ниже будут приведены некоторые основные положения, касающиеся всех типов ПТО.

Установка ПТО

  1. Место расположения агрегата должно обеспечивать свободный доступ к основным узлам для проведения технического обслуживания.
  2. Крепление подающих и отводящих магистралей должно быть жестким и герметичным.
  3. Устанавливать теплообменник следует на строго горизонтальную бетонную или металлическую основу, обладающую достаточной несущей способностью.

Пуско-наладочные работы

  1. Перед запуском агрегата необходимо проверить его герметичность согласно рекомендациям, приведенным в техническом паспорте изделия.
  2. При первичном запуске установки скорость повышения температуры не должна превышать 250С/ч, а давление в системе 10 Мпа/мин.
  3. Порядок проведения и объем пуско-наладочных работ должны четко соответствовать приведенному в паспорте агрегата перечню.

Эксплуатация агрегата

  1. В процессе использовании ПТО не допускается превышение температуры и давления рабочей среды. Перегрев или повышение давления могут привести к серьезным поломкам или полному выходу из строя агрегата.
  2. Для обеспечения интенсивного теплообмена между рабочими средами и увеличения КПД установки необходимо предусмотреть возможность очистки рабочих сред от механических примесей и вредных химических соединений.
  3. Значительно продлить срок службы устройства и увеличить его производительность позволит регулярное проведение технического обслуживания и своевременная замена поврежденных элементов.

Устройство и принцип работы

Конструкция разборного пластинчатого теплообменника включает в себя:

  • стационарную переднюю плиту на которой монтируются входные и выходные патрубки;
  • неподвижную прижимную плиту;
  • подвижную прижимную плиту;
  • пакет теплообменных пластин;
  • уплотнения из термостойкого и устойчивого к воздействию агрессивных сред материала;
  • верхнюю несущую базу;
  • нижнюю направляющую базу;
  • станину;
  • комплект стяжных болтов;
  • Набор опорных лап.

Такая компоновка агрегата обеспечивает максимальную интенсивность теплообмена между рабочими средами и компактные габариты устройства.


Конструкция разборного пластинчатого теплообменника

Чаще всего, теплообменные пластины изготавливаются методом холодной штамповки из нержавеющей стали толщиной от 0,5 до 1 мм, однако, при использовании в качестве рабочей среды химически активных соединений, могут использоваться титановые или никелевые пластины.

Все пластины, входящие в состав рабочего комплекта, имеют одинаковую форму и устанавливаются последовательно, в зеркальном отражении. Такая методика установки теплообменных пластин обеспечивает не только формирование щелевых каналов, но и чередование первичного и вторичного контуров.

Каждая пластина имеет 4 отверстия, два из которых обеспечивают циркуляцию первичной рабочей среды, а два других изолируются дополнительными контурными прокладками, исключающими возможность смешивания рабочих сред. Герметичность соединения пластин обеспечивается специальными контурными уплотнительными прокладками, изготовленными из термостойкого и устойчивого к воздействию активных химических соединений материала. Устанавливаются прокладки в профильные канавки и фиксируются с помощью клипсового замка.


Принцип работы пластинчатого теплообменника

Оценка эффективности любого пластинчатого ТО осуществляется по следующим критериям:

  • мощности;
  • максимальной температуре рабочей среды;
  • пропускной способности;
  • гидравлическому сопротивлению.

Исходя из этих параметров подбирается необходимая модель теплообменника. В разборных пластинчатых теплообменниках регулировать пропускную способность и гидравлическое сопротивление можно, изменяя количество и тип пластинчатых элементов.

Интенсивность теплообмена обусловлена режимом течения рабочей среды:

  • при ламинарном течении теплоносителя интенсивность теплообмена минимальна;
  • для переходного режима характерно увеличение интенсивности теплообмена за счет появления завихрений в рабочей среде;
  • максимальная интенсивность теплообмена достигается при турбулентном движении теплоносителя.

Рабочие характеристики пластинчатого ТО рассчитываются для турбулентного течения рабочей среды.

В зависимости от расположения канавок, различают три типа теплообменных пластин:

  1. с «мягкими» каналами (канавки расположены под углом 600). Для таких пластин характерна незначительная турбулентность и небольшая интенсивность теплообмена, однако «мягкие» пластины обладают минимальным гидравлическим сопротивлением;
  2. со «средними» каналами (угол рифления от 60 до 300). Пластины являются переходным вариантом и отличаются средними показателями турбулентности и интенсивности теплопередачи;
  3. с «жесткими» каналами (угол рифления 300). Для таких пластин характерна максимальная турбулентность, интенсивный теплообмен и значительное увеличение гидравлического сопротивления.

Для увеличения эффективности теплообмена движение первичной и вторичной рабочей среды осуществляется в противоположном направлении. Процесс теплообмена между первичной и вторичной рабочими средами происходит следующим образом:

  1. Теплоноситель подается на входные патрубки теплообменника;
  2. При перемещении рабочих сред по соответствующим контурам, сформированным из теплообменных пластинчатых элементов, происходит интенсивная теплопередача от нагретой среды нагреваемой;
  3. Через выходные патрубки теплообменника нагретый теплоноситель направляется по назначению (в отопительные, вентиляционные, водопроводные системы), а остывший теплоноситель снова попадает в рабочую зону теплогенератора.

Принцип работы пластинчатого теплообменного аппарата

Для обеспечения эффективной работы системы необходима полная герметичность теплообменных каналов, которая обеспечивается уплотнительными прокладками.

Конструкция и принцип работы пластинчатого теплообменника

Доступные программы скачиваются, в расчете теплообменника использовать можно несколько версий, для большей уверенности в результативности.

К недостаткам — отсутствие функции подогрева воды.

В случае, когда выбирается схема подключения в одну ступень. Однако более популярными сегодня являются пластинчатые паяные системы обеспечения теплом, и популярность их основана на отсутствии зажимных элементов. Рассмотрим несколько примеров схем.

То есть при монтаже после чистки все станет на свои места без особого усилия

Перед монтажом пластинчатого теплообменника важно учитывать, что расчет, проводимый своими руками для пластинчатого теплообменника для котла, входящая температура не должна превышать 55 градусов. Выдавая большой расход, скоростные агрегаты немного недогревают выходящую жидкость, этот недостаток обнаружен специалистами во время эксплуатации

Один из вариантов двухступенчатого подключения теплообменников В данном случае первичный нагрев идет от обратного трубопровода отопления.

Тут она доводится до нужной температуры и уходит потребителю. Кондиционеры, подогреватели, пластичные теплообменники, соответственно, нуждаются в более сложном обслуживании при помощи компьютерного и сервисного обеспечения. Управление температурой происходит при помощи датчика и регулирующего клапана, установленного на обратке можно и на подачу поставить.

Так же за помощью можно обратиться к специалисту, который проведет своими руками расчет, не озадачивая клиента. Имея такую же мощность, он по размерам втрое меньше кожухотрубного, при этом способен обеспечить большой расход нагреваемой среды, например, воды для нужд ГВС. Эти выходы могут быть в виде фланца, трубы под сварку, резьбового соединения.

Принцип работы пластинчатого теплообменника.

Кожухотрубные Кожухотрубные теплообменник для горячей воды от отопления проще по конструкции, но менее эффективны, из-за чего, для обеспечения необходимой температуры, должны иметь солидные размеры. Толщина пластины зависит от максимального рабочего давления. Опыт и умения специалистов позволяют как выполнить простейшие расчеты, так и сложный монтаж с пуско-накладкой. Недостатком этой схемы является сильно завышенная нагрузка на систему отопления и неэффективный нагрев воды во втором контуре при большем перепаде температур. Для этого понадобиться помощь специализированных кадров той или иной компании.

Важным является и температурная разница минимум в 10 градусов. Значение для раковины умножается на количество устройств в доме, которые могут использоваться параллельно, и складывается со значением для ванны или душевой в зависимости от того, что именно используется. Недостаток: дороговизна, обусловленная подключением двух теплообменников для приготовления горячей воды. Доводится температура до нормы при помощи повторного нагрева, но уже от теплоносителя, который идет на подачу. SYSTHERM Теплообменники в горячем водоснабжении На сегодняшний день организация процессов по обеспечению водой — это одно из главных условий для создания уютной жизни граждан.
Теплообменник (регистр) для бани — какой выбрать и как подключить, чтобы греть воду?

Материалы, используемые для изготовления

Материал для производства пластинчатого теплообменника должен иметь следующие качества:

  • устойчивость к химическому воздействию;
  • антикоррозийные свойства;
  • стойкость к высокой температуре.

Большинство низкотемпературных элементов для аппаратов изготавливают из малоуглеродистой стали. Для деталей, работающих при высоких температурах, используют жароустойчивую сталь. Она не окисляется при воздействии химических растворов и обладает повышенной прочностью.

Для отдельных узлов пластинчатого теплообменника применяют чугун и цветные металлы

Важно, чтобы материал обладал хорошими качествами для литья и не подвергался коррозии

Для вентилей и задвижек применяют ковкий чугун, который имеет большую пластичность. Легированный чугун используют для производства деталей, устойчивых к растворам кислот и высокой температуре. Он не окисляется, не изменяет форму при нагреве до 1000 °С.

Цветные металлы и сплавы подходят для корпуса теплообменника. Они обладают высокой тепловой проводимостью и антикоррозийными качествами. Большое распространение получили:

  • латунь — сплав на основе меди с добавлением олова;
  • бронза — сплав меди, алюминия и цинка.

Для изготовления устройств также применяют неметаллические материалы: каучук, пластмассу, силикон. Они не подвержены агрессивному влиянию окружающей среды, поэтому их используют для производства прокладок и уплотнителей.

Керамические материалы имеют небольшой вес, не распадаются при высокой температуре и обладают хорошей прочностью. Их применяют в качестве теплоизоляционных элементов.

Чугунное устройство


Если нужен вариант, в меньшей степени подверженный коррозии, стоит купить теплообменник для котла из чугуна. Материал не боится контакта с водой, поэтому изделие служит гораздо дольше стального аналога. К недостаткам относят необходимость особого ухода. Материал отличается хрупкостью, возможно появление трещин из-за накипи, провоцирующей неравномерный нагрев материала. Для профилактики проблемы проводится промывка. Если котел эксплуатируется с участием водопроводной воды, раз в год его нужно промывать, чтобы избавиться от накипи. Если теплоносителем выбран антифриз, промывку выполняют 1 раз в 2 года. Если задействуется очищенная (фильтрованная) вода, достаточно проводить профилактику 1 раз в 4 года.

Строение и принцип работы

Механизм действия легко рассмотреть на примере пластинчатого теплообменника заводской сборки. Структура предусматривает два контура и четыре выхода. Пластинчатое устройство разделяет потоки по давлению и температуре. Теплоносителями выступают кислоты и другие жидкости.

Теплообменники для отопления предполагают подключение к одному контуру теплых полов, а к другому – теплоцентрали.

Прямое подключение центрального теплоносителя невозможно, поскольку это приводит к выходу из строя теплого напольного покрытия.

Это происходит из-за повышения давления в теплоцентрали, температурных перепадов и присутствия химически агрессивных веществ в теплоносителе.

Строение теплообменника представлено на рисунке ниже.

Схематичное устройство пластинчатого теплообменника

Структуру теплообменника составляют:

  • станина, которая с одной стороны устройства прикрепляется к неподвижной прижимной плите и служит элементом опоры;
  • пакет пластин, образующий между составляющими элементами каналы для теплоносителя;
  • рама, которая состоит из подвижной прижимной плиты , неподвижной прижимной плиты и задней стойки;
  • кожух, служащий для защиты устройства от внешних воздействий;
  • шпильки, которые размещены по краю отверстий, через которые в устройство поступает теплоноситель;
  • прокладка, необходимая для герметичности каналов;
  • опорные и крепежные элементы (направляющие балки, несущая база, лапы станины и рамы, подшипники, болты, гайки, шайбы).

Синие и красные стрелки на рисунке обозначают направления движения холодного и горячего теплоносителя внутри теплообменника соответственно.

В быту применяют теплообменник, чей принцип функционирования основан на разделении потоков и поддержании автономного функционирования теплых полов при пониженном уровне рабочего давления в 1,5 бара и подключении чистой воды.

Структуру теплообменного оборудования составляют три группы пластин:

  1. Набранные, принадлежащие автономной системе отопления с пониженным уровнем давления.
  2. Набранные, принадлежащие центральной системе отопления с повышенным уровнем температуры и давления.
  3. Разделительные, характеризующиеся малой толщиной и передающие тепло от централизованной системы к автономной.

Число и параметры пластин предопределяют мощность теплообменного оборудования. Каждое устройство предполагает установку очистительного фильтра. Он способен удержать грубые частицы: окалины, стружку и прочие. Фильтр нуждается в периодическом промывании очистительными растворами.

Принцип работы теплообменника

Принцип работы теплообменника заключается в передаче тепловой энергии от одного теплоносителя к другому. В устройство поступает прямая греющая среда и холодная среда. При прохождении их между пластинами по каналам происходит нагревание холодной среды. На выходе из теплообменника получают нагретую среду и обратную греющую среду. Внутри оборудования теплообменивающие жидкости движутся навстречу друг другу, то есть в противотоке, и не могут смешиваться, поскольку разделены пластинами.

Схема

По схеме работы теплообменники делят на две разновидности:

  • одноходовые,
  • многоходовые.

Одноходовый теплообменник устроен так, что каждая среда протекает через щелевые каналы один раз. После этого жидкость поступает в сборный коллектор и оттуда — в трубопровод. При таком исполнении все присоединительные патрубки находятся с одной стороны устройства — на неподвижной плите. Подвижную плиту можно двигать как угодно, так что разбирать теплообменник для обслуживания и ремонта ничто не мешает.

Чертеж пластинчатого теплообменника

Многоходовая схема применяется в тех случаях, когда в греющей среде после одного прохода остается еще много тепла. Такое наблюдается, если:

  • пластины имеют маленькую площадь либо в кассете их установлено малое количество,
  • расходы двух сред очень сильно отличаются,
  • разность температур греющей и нагреваемой среды невелика, поэтому теплообмен протекает с низкой интенсивностью.

В кассету многоходового пластинчатого теплообменника добавляются пластины только с двумя портами, расположенными с одной стороны. Благодаря этому, каждая среда протекает по каналам два раза или более, так что нагреваемая среда усваивает от греющей намного больше тепла, чем при одноходовой схеме.

У многоходовой схемы есть три недостатка:

  • теплообменник получается более дорогим,
  • увеличивается гидравлическое сопротивление,
  • патрубки имеются не только на неподвижной, но и на подвижной плите, что сильно усложняет разборку кассеты.

Из-за этого по возможности стараются применять одноходовую схему, добиваясь высокого теплосъема за счет увеличения площади пластин и их количества.

Теплообменник для печи

Теплообменник в печь для отопления можно изготовить самостоятельно, для этого обычно используется листовая 3-мм сталь или трубы, которые могут быть профильными или круглыми. Толщина их стенок может изменяться в пределах от 3 до 5 мм, тогда как диаметр обычно варьируется от 30 до 50 мм.

В качестве альтернативного решения для этой цели можно использовать трубы из нержавейки или меди. Однако из-за их высокой стоимости материал используется довольно редко. Да и с применением листового металла регистры изготовить проще. Их будет легче чистить при эксплуатации. Однако обычно они имеют меньшую площадь контакта с горячими газами или пламенем, ведь в большинстве случаев представляют собой сплошную поверхность, а в теплообмене участвует лишь внутреннее основание, обращённое к пламени.

Если изготавливать такой теплообменник для отопления частного дома из трубы, то он будет иметь такие же размеры, как и в вышеописанном случае, но теплообменная площадь увеличится. Ведь горячие газы и пламя будут контактировать. Однако при изготовлении придется изрядно потрудиться, особенно это касается тех конструкций, которые полностью состоят из трубы круглого сечения.

Если вы решили прибегнуть к технологии, которая предполагает применение труб, то лучше предпочесть цельнотянутые бесшовные изделия, которые дополнительно укрепляются сварным швом. Их следует расположить с наружной стороны регистра, в том месте, где находится кирпичная кладка.

Когда теплообменник своими руками для отопления изготавливается по такой технологии, довольно часто листовое железо и трубы комбинируют. Это делается для того, чтобы использовать положительные качества изделий, а также для упрощения технологии. В конечном итоге удастся получить достаточно внушительную теплообменную площадь.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий