Фотоэлектрическая панель и солнечный коллектор
Эти элементы часто путают друг с другом. И не без повода. Оба используют солнечную энергию, имеют схожую конструкцию, внешний вид и способ сборки.
Однако существенное отличие между ними происходит в том, как они преобразуют энергию. Фотоэлектрическая панель используется для преобразования солнечного излучения в электричество, в то время как солнечный коллектор использует солнце для выработки тепла.
Поэтому, при поиске универсального решения для обеспечения своего дома электричеством, стоит выбирать солнечные батареи. Ток, который они производят, можно использовать по-разному, включая отопление нашего дома. Однако это не всегда будет выгодно с экономической точки зрения. Поэтому, если строительство солнечной установки оправдано желанием вырабатывать тепло в домашних условиях, лучше инвестировать в солнечные коллекторы.
Еще стоит упомянуть о гибридных решениях. Это устройства, которые сочетают в себе фототермическое и фотоэлектрическое преобразование. На практике это означает не что иное, как преобразование солнечной энергии в электричество и тепло, которые можно использовать для отопления дома или горячей воды.
Инвертор преобразует постоянный ток, генерируемый фотоэлектрическими панелями, в переменный ток, адаптированный к требованиям электросети. Он также контролирует и защищает солнечную систему. Когда он обнаруживает любую ошибку или повреждение, он немедленно отправляет информацию пользователю через Интернет. При выборе инвертора, стоит убедиться, что это модель, оснащенная защитными устройствами, которые в определенных ситуациях отключают ток.
Несущая конструкция — фотоэлектрические панели нельзя укладывать прямо на крышу или грунт. Они требуют специальной подложки, которая называется несущей структурой. В случае фотоэлектрических панелей, размещенных на крыше, конструкция состоит из рельсовых профилей, которые крепятся под кровельной черепицей — к стропилам крыши. Когда речь идет о фотоэлектрических панелях, расположенных на земле, несущая конструкция состоит из стальных профилей (стоек), установленных под углом 30°.
Перед установкой фотоэлектрических панелей стоит проверить, все ли элементы, входящие в несущую конструкцию, защищены от коррозии. Если система должна быть долговечной, она должна быть защищена от ржавчины и изготовлена из соответствующих материалов. В этом случае лучше всего подходит нержавеющая сталь, из которой должны изготавливаться не только профили, но и детали кабелей и разъемов.
Последние несут ответственность за правильную передачу электроэнергии от фотоэлектрических панелей к инвертору. Поэтому они должны быть устойчивы к вредному воздействию ультрафиолетового излучения и других атмосферных факторов, таких как дождь, снег или мороз.
Солнечный трекер — это устройство, закрепленное на раме, на которой установлена солнечная панель. Он, как правило, оснащен двигателем и программным обеспечением, благодаря которому панель направляется вперед к солнцу, следуя по небу.
Устанавливая такие устройства, мы повышаем эффективность нашей солнечной установки.
Что можно попробовать сделать
Давайте разберем два простейших способа, как добыть энергию из земли.
Принцип гальванической пары
Наша задача, найти разность потенциала, и в земле это сделать проще всего, так как она состоит из газов, воды и минеральных веществ. Грунт – это множество твердых частиц, между которыми находятся пузырьки воздуха и молекулы воды.
Элементарная единица почвы – мицелла. Это глинисто-гумусовый комплекс, обладающий разностью потенциалов. Эти частицы накапливают заряды по тому же принципу, что и вся планета, поэтому в почве постоянно протекают электрохимические реакции. И наша задача подключится к этой «сети».
Использовать можно два электрода, сделанных из разных металлов (медь и оцинкованное железо), то есть будет использоваться принцип, как в обычной солевой батарейке. Помимо гальванической пары нам потребуется электролит (раствор соли).
- Погружаем электроды в грунт где-то на полметра, на расстоянии в 25 сантиметров друг от друга.
- Устанавливаем вокруг кусок трубы нужного диаметра, чтобы оградить остальную почву от электролита, так как уровень соли не позволить расти в месте поливки никаким растениям.
- Готовим насыщенный водный раствор соли и проливаем им землю между электродами.
- Подключаем к выводам вольтметр спустя минут 15 и видим, что прибор показывает напряжение в 3В.
Итого, к полученному источнику питания можно подключить маломощную светодиодную лампу. Показания вольтметра будет разниться в зависимости от плотности грунта, его влажности и прочих показателей, так что на разных участках результаты будут отличными.
Способ с заземлением
Если ваш частный дом оборудован нормальным контуром заземления, то знайте, что часть потребляемого вами тока уходит через него в грунт, особенно если включено сразу много электроприборов.
В результате этого процесса, между нулевым проводом вашей сети и заземляющим возникает разница потенциалов, составляя от 15 до 20 Вольт. Подключив к ним низковольтную лампочку, вы заставите ее светиться
Схему можно усовершенствовать, установив трансформатор и выровняв тем напряжение. А включив в схему аккумулятор, можно запасать энергию, что позволит использовать схему, когда остальные приборы в доме «молчат».
Вариант рабочий, но подходит он только для частных домовладений, так как в квартирах нет нормального заземления, а использование водопроводных труб для этого законодательно запрещено. Тем более нельзя использовать для подключения землю и фазу, так как заземление окажется под напряжением в 220В – цена такого опыта, возможно, чья-то жизнь.
Энергия из пустоты
Наука не даёт вразумительного определения ни полю, ни энергии. Зато она ясно формулирует — энергия не берётся из ниоткуда и никуда не девается. Пытаясь добывать «энергию из ничего», мы можем только стараться «встраиваться» в процесс её естественного преобразования из одних видов в другие.
Энергия определяется полезной работой, а поле — пространственными характеристиками влияния его источника. И статический электрический заряд, и динамический магнитный эффект вокруг проводника с током, и тепло нагретого тела считаются полями.
Любое поле может выполнить полезную работу, следовательно, передать часть своей энергии. Именно это свойство побуждает искать источники дармовой энергии в различных полях. Считается, что такой энергии существует в разы больше, чем в освоенных человечеством традиционных источниках.
Например, мы умеем использовать энергию гравитации огромной Земли, но не умеем её извлекать из притяжения малюсенького камня. Она слишком незначительная, чтобы это имело смысл, но практически неисчерпаема. Если придумать некий способ её извлечения из камешка, мы получим новый источник энергии.
Примерно этим занимаются исследователи и разработчики всех видов и мастей в попытках извлечь «энергию из ничего». То поле, из которого различные изыскатели стремятся научиться добывать энергетический ресурс, они называют эфир.
Эфир и его свойства
Этот термин бытовал в ходу у науки ещё столетие назад. Используя понятие «эфир», открыты были все базовые законы физики и не только. Оперируя именно этим понятием, проводили свои исследования и разработки Никола Тесла и другие умы XIX и начала XX века.
Наука однажды от эфира отреклась. В результате многие явления, такие как поля, оказались без него необъяснимы, а он сам теперь не имеет чёткого определения. Это не помешало использовать понятие «эфир» в обосновании разработок получения «свободной энергии из ничего». Хотя ныне под этим зачастую подразумеваются совершенно разные явления.
Сегодня под выражением «получить эфирную энергию» понимают как добычу её из того же эфира, который имел в виду Н. Тесла, так и вообще все способы получения «дармовой энергии из ничего». Эфир при этом считается структурной частью пространства и носителем любой энергии.
Никола Тесла и его идеи
Большинство современных конструкторов стремятся получить электричество именно «из воздуха». Самым известным разработчиком таких способов был Никола Тесла. Его называют первооткрывателем чуть ли не всех ныне существующих «благ цивилизации». Интернет, радио, телевидение, мобильная связь — практически всё считается основанным на открытых им ещё в начале XX века принципах.
Многие его разработки считаются утраченными ещё со времени его смерти. Одни из них известны исключительно как принципы, другие — всего лишь в общих чертах. Тем не менее, многие нынешние конструкторы пытаются сегодня воспроизвести открытия и устройства Тесла, пользуясь уже современными научными и технологическими открытиями.
Большинство идей Тесла базируются на извлечении её из полей, формируемых взаимодействием Земли со своей ионосферой. Эта система рассматривается как большой конденсатор, в котором одна пластина — Земля, а другая — её ионосфера, облучаемая космическими лучами. Как и любой конденсатор, такая система постоянно накапливает заряд.
https://youtube.com/watch?v=I5Ys4XBeB28
Схема получения электричества из воздуха по проекту Стивена Марка
Генератор Стивена Марка также доступен для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которой предрекал большое будущее ее изобретатель. Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к появлению разряда сравнительно высокой мощности.
Схема получения электричества из воздуха выглядит следующим образом:
- Основание прибора Марка – отрезок фанеры, резина или полиуретан, на которые будут уложены две коллекторные катушки и четыре катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.
- Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
- Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяют изолированный медный провод, который располагают по всей площади основания.
- Устанавливается конденсатор на 10 микрофарад.
- Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и прочие особенности конструкции.
Устройство готово к тестированию и первым пробным подключениям к маломощному энергозависимому устройству.
Простые схемы
Желая добыть атмосферное электричество своими руками, следует рассмотреть различные схемы и чертежи. Некоторые из них настолько простые, что даже начинающий изобретатель без особых трудностей сможет воплотить их в жизнь и создать примитивную установку
Важно отметить, что современные сети и линии электропередач вызывают дополнительную ионизацию воздушного пространства, что повышает количество электрического потенциала, содержащегося в атмосфере. Остается научиться добывать его и накапливать. Наиболее простая схема подразумевает использование земли в качестве основания и металлической пластины в виде антенны
Такое устройство может накапливать электроэнергию из воздуха, а затем распределять ее для решения бытовых задач
Наиболее простая схема подразумевает использование земли в качестве основания и металлической пластины в виде антенны. Такое устройство может накапливать электроэнергию из воздуха, а затем распределять ее для решения бытовых задач.
При создании такой установки не приходится задействовать дополнительные накопительные приборы или преобразователи. Между металлической землей и антенной устанавливается электрический потенциал, который имеет свойство расти. Однако из-за непостоянной величины предугадать его силу очень проблематично.
Принцип работы такого устройства чем-то напоминает молнию — когда потенциал достигает пиковой отметки, происходит разряд. Из-за этого можно добыть из земли и атмосферы внушительный объем полезных ресурсов.
https://youtube.com/watch?v=gEs7AhRDldY
Среди плюсов вышеописанной схемы следует выделить:
- Простоту реализации в домашних условиях. Такой опыт можно с легкостью выполнить в домашней мастерской, используя подручные материалы и инструменты.
- Дешевизну. При создании устройства не придется покупать дорогие приспособления или узлы. Достаточно найти обычную металлическую пластину с токопроводящими свойствами.
Однако кроме плюсов есть и существенные недостатки. Один из них заключается в высокой опасности, связанной с невозможностью рассчитать примерное количество ампер и силу импульса. Также в рабочем состоянии система создает открытый контур заземления, способный притягивать молнию. Именно по этой причине проект не приобрел массового распространения.
Способ с двумя электродами
Простейший способ получить в домашних условиях электроэнергию – использовать принцип, по которому устроены классические солевые батарейки, где использована гальваническая пара и электролит. При погружении стержней, выполненных из разных металлов, в раствор соли, на их концах образуется разность потенциалов.
Мощность такого гальванического элемента зависит от целого ряда факторов
, включая:
- сечение и длину электродов;
- глубину погружения электродов в электролит;
- концентрацию солей в электролите и его температуру и т.д.
Чтобы получить электричество, требуется взять два электрода для гальванической пары – один из меди, второй из оцинкованного железа. Электроды погружают в грунт приблизительно на глубину в полметра, установив их на расстоянии около 25 см, относительно друг друга. Грунт между электродами следует хорошо пролить раствором соли. Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно обнаружить, что система дает бесплатно ток около 3 В.
Добыча электричества с помощью 2-х стержней
Если провести ряд экспериментов на разных участках, выяснится, что показания вольтметра варьируются в зависимости от характеристик грунта и его влажности, размеров и глубины установки электродов. Для повышения эффективности рекомендуется ограничить при помощи куска трубы подходящего диаметра контур, куда будет заливаться солевой раствор.
Как получить электричество от батареи отопления
Для того чтобы получить бесплатное электричество от радиаторов отопления, нам понадобится дополнительное оборудование в виде термоэлектрического элемента Пельтье. Элемент Пельтье представляет собой две керамические пластины, между которыми заключено большое количество полупроводников в виде термопар.
Принцип действия основан на возникновении разности температур при протекании электрического тока. Обычно такие устройства используют для создания мобильных холодильных установок, но можно добиться и обратного эффекта. Достаточно изменить полярность подключения элемента, и эффект охлаждения сменится на нагревание.
Элемент Пельтье
Если с одной стороны подвести тепло к этому элементу, а с другой, наоборот, охлаждать его, то благодаря созданию разности температур на его поверхностях, можно снимать с него электроэнергию, которой вполне хватит, например для работы светодиодной лампы.
Чтобы закрепить конструкцию на трубе отопления, можно воспользоваться алюминиевым уголком. А для повышения плотности контакта образовавшиеся зазоры можно уплотнить алюминиевой фольгой.
1- Труба отопления 2- Алюминиевый уголок 3- Радиатор от старого ПК 4- Элемент Пельтье (40*40 мм) 5- Повышающий преобразователь 6- Алюминиевая фольга
Также потребуется преобразователь напряжения, который повышает создаваемое элементом Пельтье напряжение 0,5 В до 3–5 В, необходимых для работы светодиодной лампы.
Повышающий преобразователь напряжения.
С одной стороны мы нагреваем элемент Пельтье теплом от радиатора отопления, а с другой стороны охлаждаем его окружающим воздухом. Чтобы увеличить площадь поверхности охлаждения, можно использовать обычный радиатор охлаждения от старого компьютера. Чем больше будет его площадь, тем лучше.
Такое устройство может пригодиться в качестве бесплатного дежурного освещения, например, в подъезде. Конечно, этот метод получения электричества можно назвать лишь условно бесплатным, ведь за отопление вы так или иначе платите деньги, но почему бы не использовать кэшбек в виде бесплатной электроэнергии?
Подключение электросети к дому
Если разрешение получено, необходимо подготовить все, что потребуется для подключения.
У вас может не быть на руках общей схемы электросети вашего участка или дома, но перед тем, как приступить к монтажным работам по непосредственному подводу питания, должна быть продумана и составлена схема подключения электричества, на которой будет обозначено, какие автоматы будут в электрощите, какой счетчик электроэнергии вы предполагаете поставить.
Продумайте, как будете заводить электрокабель в дом, как подключать его к электрощиту. Предварительно сделайте заземление на вашем участке – оно будет необходимо для обеспечения необходимо уровня электробезопасности.
Прежде чем завести силовой электрокабель в здание, вам необходимо на наружной стене здания или на специальной опоре установить специальный, водонепроницаемый бокс, в котором будет располагаться рубильник, и осуществляться подключение электричества от столба.
Только после этого рубильника, вы подключаете электрощит в доме.
Согласно действующих тех. условий для подключения электричества, проводка в доме должна подключаться через специальные автоматы защиты: автоматический выключатель с защитой от перегрузки по току и устройство защитного отключения – так называемое УЗО.
Вы можете установить комбинированный автомат защиты, который будет совмещать в себе оба названых устройства.
Все электромонтажные работы на участке и в доме вы можете проводить самостоятельно либо обратиться к специалистам. Однако помните, что непосредственное подключение рубильника в герметичном боксе к линии электропередач – т.е. проводку кабеля от рубильника до столба, могут произвести только специалисты.
Способы добычи энергии из земли
Не секрет, что легче всего добывать электричество из твердой и влажной среды. Самым популярным вариантом является почва, в которой сочетается и твердая, и жидкая, и газообразная среда. Между мелкими минералами содержатся капли воды и пузырьки воздуха. К тому же в почве присутствует еще одна единица — мицелла (глинисто-гумусовый комплекс), которая является сложной системой с разницей потенциалов.
Если внешняя оболочка создает отрицательный заряд, то внутренняя — положительный. Мицеллы с отрицательным зарядом притягивают к верхним слоям ионы с положительным. В результате в почве постоянно осуществляются электрические и электрохимические процессы.
Учитывая тот факт, что в почве содержатся электролиты и электричество, ее можно рассматривать не только как место для развития живых организмов и выращивания урожая, но и как компактную электростанцию. Большинство помещений концентрирует в эту оболочку внушительный электрический потенциал, который подается с помощью заземления.
В настоящее время используется 3 способа добычи энергии из почвы в домашних условиях. Первый заключается в таком алгоритме: нулевой провод — нагрузка — почва. Второй подразумевает использование цинкового и медного электрода, а третий задействует потенциал между крышей и землей.
Следующий способ базируется на получении энергии только из земли. Для этого нужно взять два стержня из токопроводящих материалов — один из цинка, а другой из меди, а затем установить их в землю. Желательно использовать тот грунт, который находится в изолированном пространстве.
Найти промышленные устройства для получения электрики из земли проблематично, ведь их практически никто не продает. Но создать такое изобретение своими руками, следуя готовым схемам и чертежам, вполне реально.
Создавая прибор по добыче электроэнергии из воздуха, необходимо помнить об определенной опасности, которая связана с риском появления принципа молнии
Чтобы избежать непредвиденных последствий, важно соблюдать правильность подключения, полярность и прочие важные моменты
Работы по изготовлению устройства для получения доступного электричества не требуют больших финансовых затрат или усилий. Достаточно подобрать простую схему и в точности следовать пошаговому руководству.
Конечно же, сверхмощный прибор своими руками создать проблематично, так как он требует более сложных схем и может обойтись в кругленькую сумму. А вот что касается изготовления простых механизмов, то такую задачу можно реализовать в домашних условиях.
В 1729 году мир узнал, что на земле существуют материалы (в основном это металлы), которые могут пропускать через себя ток. Эти материалы стали именоваться проводниками. Были найдены и другие вещества (например янтарь, стекло, воск), которые не проводят ток которые стали именоваться изоляторами. Но применять электричество человечество смогло лишь в начале 17 века. Стало ясно, что ток может быть использован для получения тепла и света. Тогда же было установлено, что электричество — это поток небольших заряженных частиц — электронов. И каждый из них несет малый заряд энергии. Но когда собирается много электронов, заряд становится большим, вот тогда и появляется электрическое напряжение. Поэтому электричество может по проводам перемещаться на длинные расстояния.
Давайте рассмотрим одно занятное явление. Человек снимает свитер через голову и вдруг ни с того, ни сего раздается треск. Если раздеваться в темноте, то можете наблюдать, как этот треск сопровождается искрами. Это искрит и трещит одежда. Посмотрев внимательнее можно увидеть, что свитер прилегает к рубашке, которая еще была одета на теле. Таким образом, между вещами возникает ток. Его проявление на разных предметах приводит не только к притяжению, но и к отталкиванию. Это и есть действие электричества. Выходит, что человек в нынешнее время не может и шагу ступить без электричества.
Как добыть энергию из воздуха
Простейшая принципиальная схема не включает в себя никаких дополнительных накопительных устройств и преобразователей. По сути, требуется только металлическая антенна и земля. Между этими проводниками устанавливается электрический потенциал. Он со временем накапливается, поэтому это непостоянная величина и рассчитать его силу практически невозможно. Такое, вырабатывающее ток, устройство работает по принципу молнии – через определенный промежуток времени происходит разряд тока (когда потенциал достиг своего максимума). Таким образом, можно извлечь из земли и воздуха достаточно большое количество полезной электроэнергии, которой будет достаточно для работы электрической установки. Её конструкция подробно описывается в труде: «Секреты свободной энергии холодного электричества».
Схема имеет свои достоинства:
- Простота в реализации. Опыт можно с легкостью повторить в домашних условиях;
- Доступность. Не нужно никаких приспособлений, самая обычная пластина из токопроводящего металла подойдет для реализации проекта.
Недостатки:
- Реализация схемы очень опасна. Нельзя рассчитать даже примерное количество ампер, не говоря уже про силу токового импульса;
- При работе образовывается своеобразный открытый контур заземления, к которому притягиваются молнии. Это является одной из самых главных причин, почему проект не «пошел в массы» — он опасен для жизни и производства. Удар молнии подчас достигает 2000 Вольт.
С этой точки зрения, свободное электричество, добытое при помощи ветрогенераторов более безопасно. Но тем ни менее, сейчас можно даже купить такой прибор (к примеру, ионизатор-люстра Чижевского).
Но есть еще один вариант рабочей схемы – это генератор TPU электричества из воздуха от Стивена Марка. Это устройство позволяет получить определенное количество электроэнергии для питания различных потребителей, причем, делает он это без какой-либо подпитки из вне. Технология запатентована и многие ученые уже повторили опыт Стивена Марка, но из-за некоторых особенностей схемы она еще не пущена в обиход.
Принцип работы прост: в кольце генератора создается резонанс токов и магнитные вихри, они способствуют появлению в металлических отводах токовых ударов. Рассмотрим наглядно, как сделать тороидальный генератор, чтобы добыть электричество из воздуха:
- Вам понадобится основание (это может быть кусок фанеры в форме кольца, отрезок резины, полиуретана и т. д.), две коллекторные катушки (внутренняя и внешняя) и катушки управления. Индивидуальный чертеж может иметь другие размеры, но в основании берется кольцо с наружным диаметром 230 мм, внутренним 180 мм, шириной 25 мм и толщиной 5 мм. Вырежьте из основания кольцо этого размера; Фото — основание
- Теперь нужно намотать внутреннюю коллекторную катушку. Намотка трехвитковая, производится многожильным проводом из меди. Специалистами заявляется, что и одного витка намотки будет достаточно для запитки лампочки и проведения эксперимента;
- Управляющих катушек – четыре штуки, каждая из них должна находиться под прямым углом, в противном случае, будут создаваться помехи магнитному полю. Намотка плоская, зазор между отдельными витками (катушками) примерно 15 мм, но это зависит от особенностей выбранного материала; Фото — четыре катушки
- Для намотки управляющих катушек могут использоваться медные одножильные провода, на описываемый размер рекомендуется делать 21 виток;
- Для установки последней катушки используется медный провод с изоляцией. Он наматывается по всей площади основания. Фото — конечная обмотка
На этом конструирование можно считать завершенным. Теперь нужно соединить выводы. Предварительно нужно между выводами обратной земли и земли установить конденсатор на 10 микрофарад. Для запитки схемы используются скоростные транзисторы и мультивибраторы. Они подбираются опытным путем, т. к. их характеристики зависят от размера основания, видов провода и некоторых других особенностей конструкции. Для управления схемой можно использовать стандартная кнопка питания (ВКЛ – ВЫКЛ). Для более подробной информации рекомендуем просмотреть видео по генератору Стивена Марка в Xvid или TVrip-качестве.
Не менее нашумевшим открытием стал генератор Капанадзе. Этот бестопливный источник энергии был презентован в Грузии, сейчас он тестируется. Генератор позволяет добывать электричество из воздуха без использования сторонних ресурсов.
В основе его работы лежит катушка Теслы, которая расположена в специальном корпусе, накапливающем электроэнергию. В свободном доступе есть видео с конференции и опыты, но нет никаких документов, реально подтверждающих существование этого изобретения. Схема не разглашается.
Электричество из земли по Белоусову: схема оборудования и рекомендации по сборке
Свое видение проблемы получения электроэнергии из земли предложил Валерий Белоусов, известный в научных кругах специалист по изучению молний и технологий предотвращения ее воздействия на планету. Его усилиями была создана система защиты от опасного атмосферного явления, надежность которой оценили мировые эксперты. Белоусов уже написал и выпустил несколько научных трудов, посвященных вопросу поглощения электричества недрами земли и путей его возможного извлечения.
Предложение Белоусова заключается в применении схемы двойного заземления. С ее помощью удастся извлекать из грунта неограниченное количество электрической энергии для подключения бытовых потребителей. Согласно разработке Белоусова, заземляющий контур пассивного типа без активатора принимает в первом полупериоде односторонний разряд. При переходе во второй полупериод заряд возвращается в грунт. Можно описать данный метод как создание буфера электрического обмена, на роль которого подойдет любая металлическая конструкция, например, труба, проведенная в квартиру.
Собрать устройство по получению электричества из земли по Белоусову можно следующим образом:
- Для пропуска волновых частот на контур пассивного типа устанавливается трансформаторная катушка. Ее основная задача – блокировка высокочастотных разрядов. Возможно применение любой подходящей катушки, которую в целях безопасности дополняют несколькими витками изолированного провода.
- Выполняется разводка: один конец провода крепится к поверхности трубы, играющей роль пассивного контура, а другой фиксируется на конденсаторе. Результат такого решения – подача и возврат волновых колебаний с одновременной блокировкой цепи, в которую не должен попасть переменный ток.
- В промежуточном разрыве необходимо установить два конденсатора. «Плюсы» элементов смотрят друг на друга. Это служит объединяющим фактором для всех процессов в цепи, которые должны выполнять роль единого конденсатора.
- К обмотке конденсатора в схеме электричества Белоусова подсоединяют лампу на 220 В. Если все элементы цепи соединены верно, она замигает, указывая на обратно-поступательное движение волновых колебаний.
Увидеть процесс наглядно можно в следующем видеосюжете:
По словам Белоусова, подобный опыт наглядно демонстрирует наличие в цепи сразу нескольких видов энергии. Одна из них, не являющаяся по своей природе электрической, названа «белой». Подобно листу чистой бумаги такая энергия открывает перед человечеством новые горизонты по использованию полезных энергоресурсов. На нее можно «наложить» любой процесс, благодаря которому вероятно даже открытие новых законов физики. Белоусов уверен: все энергии на планете действуют по своим «персональным» правилам, но неизменно подчиняются правилам единого пространства, в пределах которого находятся их источники.
Изменение цвета измерительных приборов и шкал
Простой способ видоизменить приборную панель на отечественном авто заключается в удалении защитной пленки с одометра и спидометра. Сделать это легко: достаточно лишь снять пластик и удалить пленку с прибора.
Единственным минусом такой переделки является слой клея под пленкой. Чтобы его удалить вам понадобиться не мало усилий.
Стандартным оттенком приборки на ВАЗе является темно-зеленый. Удалив пленку с экрана, вы получите панель темно-синего цвета.
У шкалы приборов также можно изменить цвет путем комбинации простых действий:
- Первым делом необходимо снять пластик с панели приборов.
- Затем, при помощи ножа и растворителя нужно удалить изображение шкалы. При серьезном подходе к делу удалить старую краску полностью можно без повреждения основной части панели.
- Теперь необходимо прикрепить к основанию светодиодную ленту желаемого цвета и установить ее в патрон лампочки.
- Чтобы работа выглядела завершенной рекомендуется также изменить цвет самих стрелок на наиболее сочетаемый с цветом шкалы.
- Снимите стрелки и удалите старую краску.
- Используя специальный автомобильный лак или лак для ногтей покрасьте стрелки в желаемый цвет.
Если посмотреть на фото тюнинга панели ВАЗ, то можно отметить, что наиболее подходящими цветами подсветки являются зеленый и белый. Такой свет не режет глаза в ночное время суток и достаточно хорошо различается днем.
Потенциал между крышей и землей
Этот способ можно применять в частных домах с металлической крышей. Для его реализации потребуется:
- электрод, подключенный к крыше, изолированной от земли;
- электрод, подключенный к проводу заземления или просто вбитый в землю.
Эффективность этого способа зависит от:
- площади крыши (чем она больше, тем лучше);
- высоты сооружения (чем выше, тем эффективней).
В частном секторе таким образом получается собрать 1-2 В, которых достаточно для работы одной или двух светодиодных ламп.
Современные ноу-хау не позволяют аккумулировать электричество из земли в объемах, позволяющих полностью отказаться от централизованной системы электроснабжения. Но, воспользовавшись кустарными методами, реально бесплатно подсветить садовые дорожки на даче.
Пример с заземлением
Этот способ подойдёт для владельцев частного дома. Когда жилище оснащено правильным контуром заземления, в грунт попадает часть тока, особенно при одновременной работе нескольких мощных электроприборов. Разница потенциалов между проводом заземления и фазой ноль может достигать 15-20 В. Так можно бесплатно зарядить телефон, счётчик его не будет учитывать.
Усовершенствовать метод можно путём установки трансформатора, так выровняется напряжение. Подключение аккумулятора во время, когда дома выключены главные потребители электроэнергии, даст возможность запастись энергией впрок. Вполне рабочий метод, который не подходит для квартир, поскольку трубы водопровода использовать нельзя, а подключение к земле и фазе может закончиться печально.
Статическое электричество из воздуха на службе вашего быта
Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, и единственное, что имеет право на существование, это солнечные батареи и ветрогенераторы. Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздухе, знакомое практически каждому человеку, означает присутствие электроэнергии в пространстве в незначительном количестве. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.
Впервые попытку получить бесплатное электричество из воздуха своими руками предпринял знаменитый ученый-физик Никола Тесла. Он длительное время занимался исследованиями природы статического электричества и убедился в возможности его накопления. Более того, Тесла сумел создать прибор, «собирающий» статику из воздуха и хранящий накопленный заряд. К сожалению, это устройство не сохранилось, зато удалось восстановить и расшифровать рабочие записи и результаты исследований ученого. На их основе физикам удалось создать аналогичный прибор, способный получать электроэнергию из окружающей среды.
Опыты Тесла повторили многие специалисты и частные лица — любители из разных стран мира. Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получать электричество из воздуха как Тесла. В числе разработок – проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха стабильно подавал бесплатную энергию на подключенные устройства-потребители, не оказывая негативного влияния на их техническое состояние и работоспособность.