Изготовление контроллера для солнечной панели

Применяемые на практике виды

  1. Устройства серии PWM.
  2. Устройства серии MPPT.

Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и  ветряной энергетики.

Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

Одна из популярных в обществе моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

Контроллер типа MPPT:

  • имеет более высокую стоимость;
  • обладает сложным алгоритмом настройки;
  • даёт выигрыш по мощности только на панелях значительной площади.

Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

Солнечная батарея и ветрогенератор

Схемы, в которых соседствуют различные источники энергии, должны строиться на общей характеристике — одинаковое напряжение источников, т.к. иначе потребуются разные контроллеры зарядки и, возможно, инверторы (если разброс по мощности источников большой), а схема блока АКБ позволяет подстраиваться под напряжение источников.

Подключение источника с генератором переменного тока с параметрами сети несколько изменяет схему подключения. На рисунке представлен самый общий вариант без блока подзарядки АКБ (контроллер и трансформатор с выпрямителем, которые отбирают энергию от внешнего источника переменного тока).

Схема подключения усложняется в случае, если автономная система подключена к централизованной сети. В России не отрегулированы ситуации, когда частный потребитель может отдавать излишки энергии в сеть. Кроме этого, переключение не бывает «гладким», т.е. происходит перепад напряжения длительностью 0,3-1 секунды в зависимости от сложности переключателя.

Сложность схемы подключения возрастает с подключением других источников. Вот некоторые вопросы, которые приходится рассматривать при сложной комплектации:

  • Согласование характеристик источников, устройств управления и преобразования энергии,
  • Надежность системы, в сочетании с проблемами утилизации избыточной энергии.

В целом ряде ситуаций могут оказать помощь наши специалисты. Для этого можно использовать сервисы сайта: онлайн-консультант и форму обратной связи.

Альтернативный источник энергии на базе солнечных батарей – отличный вариант для организации независимого энергоснабжения. Он обеспечит высокую энергетическую эффективность не только в знойные деньки, но и в пасмурную погоду. Было бы неплохо иметь такое устройство у себя дома, не так ли?

Для этого нужно лишь грамотно подобрать технические компоненты и произвести монтаж. Сделать это может каждый, зная схемы и способы подключения солнечных батарей. Мы расскажем, как сооружается производительная система, перерабатывающая «зеленую энергию» в электричество, необходимое для питания бытового оборудования.

Кроме того, вы узнаете, как выбрать место для установки гелиопанелей и как совместить их со стационарной электросетью. Полезные советы и важные рекомендации окажут действенную помощь домашним мастерам. Для упрощения восприятия приведены тематические фотографии, схемы и видеоролики.

Планируя выполнить подключение солнечных панелей собственноручно, необходимо иметь представление, из каких элементов состоит система.

Солнечные панели состоят из комплекта , основное предназначение которых – преобразовывать солнечную энергию в электрическую. Сила тока системы зависит от интенсивности света: чем ярче излучения, тем больший ток генерируется.

Помимо солнечного модуля в устройство такой электростанции входят фотоэлектрические преобразователи — контроллер и инвертор, а также подключенные к ним аккумуляторы

Основными конструктивными элементами системы выступают:

  • Солнечная батарея – преобразует солнечный свет в электрическую энергию.
  • Аккумулятор – химический источник тока, который накапливает сгенерированную электроэнергию.
  • Контроллер заряда – следит за напряжением аккумуляторов.
  • Инвертор, преобразующий постоянное электрическое напряжение аккумуляторной батареи в переменное 220В, которое необходимо для функционирования системы освещения и работы бытовой техники.
  • Предохранители, устанавливаемые между всеми элементами системы и защищающие систему от короткого замыкания.
  • Комплект коннекторов стандарта МС4.

Помимо основного предназначения контроллера – следить за напряжением аккумуляторов, устройство по мере необходимости отключает те или иные элементы. Если показатель на клеммах аккумулятора в дневное время достигает отметки в 14 Вольт, что указывает на их перезарядку, контроллер прерывает зарядку.

В ночной период, когда показатель напряжения аккумуляторов достигает предельно низкой отметки в 11 Вольт, контроллер останавливает работу электростанции.

Особенности подключения

  1. Солнечная панель.
  2. Устройство, которое контролирует заряд.
  3. Аккумулятор.
  4. Инвертор.
  5. Электрическая сеть дома.

Обязательно в эту схему входят предохранители от короткого замыкания и лампочка, которая показывает уровень нагрузки. Предохранители устанавливаются на провода с положительным зарядом перед аккумулятором, лампочкой, инвертором.

Лампочку и аккумуляторы подключают к контроллеру заряда.

Эта схема предусматривает наличие одной солнечной панели или нескольких, работающих с одинаковой нагрузкой.

Несколько батарей соединены одним проводом, площадь поперечного сечения которого всегда больше 4 мм². Если планируется установить на крыше дома несколько солнечных панелей, и часть из них будет наклонена под другим углом, то схема подключения предусматривает наличие контроллера для каждой панели.

Практика показала:

  • Монокристаллические способны генерировать ток в течение 3 десятков лет и даже больше.
  • Более дешевые поликристаллические будут работать на протяжении 20 лет.
  • Гибкие панели имеют срок службы 7-20 лет. Наиболее короткую «жизнь» имеют изделия первого поколения, наиболее длинную – изделия второго поколения. Главным минусом является быстрая деградация. В течение первых 24 месяцев работы их мощность падает на 10-40%.

Используемые на больших солнечных станциях модули смогли работать с одинаковой мощностью в течение 25 лет. Заявленные в описании характеристики выполнялись на 100%. Это говорит об отсутствии деградации. Некоторые из панелей уменьшили выработку на 10%. Производители гарантировали уменьшение выработки на 20%.

Независимо от срока использования светочувствительные элементы никогда не теряют своей производительности.
То есть может пройти 50 лет, и они могут производить такое же количество электроэнергии. На ухудшение выработки влияет разрушения защитных пленок, которые позволяют влаге проникать внутрь панели и вызывать коррозию всех соединений. Этот минус приводит к увеличению сопротивления, чрезмерному нагреву, разрушению соединений. Аккумуляторы могут работать 2-15 лет, силовая электроника – 5-20 лет.

Принципиальные схемы солнечных батарей и вариантов их присоединения к управляющим и преобразующим устройствам не является большой сложностью. Практическая сложность общей схемы, с конкретными значениями характеристик всех элементов, заключается в правильном расчете нагрузки, настройке контроллера зарядки и контроллера отбора энергии от других источников.

На примере рисунка рассмотрим некоторые нюансы, связанные с разнонаправленностью панелей, что приводит к различной освещенности панелей. Кроме этого, рассмотрим типы контроллеров зарядки АБК.

Размещение нескольких панелей в одной плоскости не вызывает особых проблем в схемотехнике и практическом подключении. Панели, размещенные в разных плоскостях, пусть близких, работают по-другому. Более освещенная панель (более близкая к точке максимальной мощности) генерирует электричество, часть которого идет на нагрев другой панели, т.к. ток течет по пути наименьшего сопротивления.

И есть два способа избежать этих потерь:

  • Установить на каждую панель свой контроллер. Имеет смысл, если это мощные панели (более 1 кВт) или панели разнесены на большое расстояние.
  • Установить отсекающие (запирающие) диоды. Некоторые производители комплектуют диодами свои панели и предусматривают их место в распределительной коробке. Кстати, внутри панели (схема панели) предусматривается наличие диодов между модулями (пластинами), что позволяет получать максимальную мощность и не «греть» пластину с более низкими показателями.

Другая мелочь, на которую мало обращают внимание — это падение напряжения в проводах низковольтной части системы и потери в соединениях. Например, при длине кабеля 1 м сечением 4 кв. мм при прохождении тока в 80 А с напряжением 12 В падение напряжения составит 0,383 В (3,19 %) или 30,6 Вт

В «скрутках» падение составляет 0,1-0,3 В

мм при прохождении тока в 80 А с напряжением 12 В падение напряжения составит 0,383 В (3,19 %) или 30,6 Вт. В «скрутках» падение составляет 0,1-0,3 В.

Красным цветом указано несоответствие передаваемой мощности сечению провода, при котором происходит сильный пожароопасный нагрев.

Виды приборов

Контроллеры для солнечных батарей представлены в нескольких видах:

  • Устройства On/Off.
  • PWM контроллеры.
  • MPPT контроллеры.
  • Устройства гибридного типа.
  • Самодельные контроллеры.

Познакомимся с каждым из этих видов. На сегодняшний день самыми популярными считаются PWM контроллер и контроллер MPPT.

Устройства On/Off

Такие контроллеры заряда аккумуляторов являются самыми простыми из всех моделей, которые представлены на современном рынке. Их функциональность весьма ограничена. Устройства этого типа отключают процесс зарядки аккумулятора при достижении максимального значения напряжения. Таким образом, предотвращается перегрев и перезарядка АКБ.

Важно подчеркнуть, что контроллер такого типа не сможет обеспечить 100% уровень заряда АКБ. Этот нюанс объясняется тем, что отключение происходит по достижении максимального значения тока

На момент обесточивания уровень заряда может находиться в пределах от 70 до 90%

Чтобы загрузить аккумуляторную батарею полностью, потребуется еще несколько часов. Неполная зарядка неблагоприятно сказывается на функционировании прибора и уменьшает срок его эксплуатации.

Контроллеры типа PWM

Контроллер уровня заряда PWM (Pulse-Width Modulation) по-другому называется ШИМ. ШИМ контроллер − устройство, принцип действия которого основан на широтно-импульсной модуляции тока. Прибор разработан с целью устранения проблемы неполной зарядки. 100% уровень достигается благодаря тому, что механизм при обнаружении максимального значения тока, понижает его продлевая таким образом зарядку аккумулятора.

Описанное устройство предотвращает перегрев аккумуляторной батареи, способствует повышению принятия заряда. В общем, хорошо сказывается на ее состоянии. Прибор этого типа считается весьма эффективным, но MPPT контроллер, если сравнивать его принцип действия с PWM, является более предпочтительным вариантом по ряду функциональных возможностей.

MPPT контроллеры

МРРТ контроллер (Maximum Power Point Tracking) − устройство, которое отслеживает максимальный предел мощности заряда. С помощью сложного алгоритма устройство этого типа следит за показаниями тока и напряжения системы энергоснабжения, определяя оптимальное соотношение параметров для обеспечения максимальной продуктивности всей солнечной электростанции.

Без преувеличения можно утверждать, что именно MPPT контроллер является наиболее усовершенствованной и эффективной моделью по сравнению с другими. Для сравнения: MPPT контроллер повышает продуктивность системы энергообеспечения до 35% относительно PWM.

На сегодняшний день MPPT контроллер считается более подходящим для систем, в которых солнечные панели занимают значительные площади. Но высокая стоимость приборов данного типа вводит определенные ограничения при его использовании. Поэтому PWM модель является доступной для эксплуатации в системах энергоснабжения частных домов.

Устройства гибридного типа

Используются в случае энергоснабжения с помощью комбинирования источников энергии, например, ветра и солнца. В основу разработки гибридного прибора положен принцип работы МРРТ и PWM контроллеров. Единственное, чем он отличается от других моделей, − это вольтамперные параметры.

Главная цель моделей гибридного типа состоит в своеобразном выравнивании нагрузки на аккумуляторы. Эта проблема возникает в результате работы ветрогенераторов, которые производят ток непостоянной величины. При этом аккумуляторы работают в усиленном режиме, который значительно уменьшает срок эксплуатации.

Самодельные приборы

В некоторых случаях, при наличии соответствующего опыта и навыков, собирают контроллер аккумуляторов для солнечной панели самостоятельно. Но, скорее всего, такой прибор будет значительно уступать в плане функциональности и эффективности. Устройства подобного типа подходят только для очень маленькой системы энергообеспечения, которая работает с низкой мощностью.

Для изготовления контроллера заряда аккумуляторов вам понадобится его схема. Погрешность работы самодельного контроллера должна позволять фиксировать перепады измеряемых величин с точностью до одной десятой.

Как осуществить подключение самостоятельно

Подключить контроллер заряда MPPT для солнечных батарей достаточно просто. Для этого следует понимать принципиальную схему подключения, уметь в ней разбираться и ориентироваться, а также соединить все провода и элементы с полным соблюдением полярности, то есть «плюс» соединить с «плюсом», а «минус» с «минусом».

На рисунке ниже можно увидеть специальные отверстия с «плюсом» и минусом», собственно следует правильно засунуть в них нужные провода.

Более подробная схема представлена ниже.

Схема подключения довольно-таки проста, важно соединить все элементы, соблюдая полярность, а также необходимо учесть, чтобы они безопасно располагались в доме и не угрожали жизни. Справиться с такой задачей сможет каждый

Возможно подключение нескольких аккумуляторов, однако здесь присоединять необходимо смешанным способом, а именно: группа аккумуляторных батарей подключается между собой параллельно, а к контроллеру последовательно. Подобную схему можно увидеть на рисунке ниже.

Как видно из схемы, количество аккумуляторов не ограничено. Однако, следует понимать, что при таком числе необходимо приобрести соответствующий инвертор, который будет способен справиться с такой большой нагрузкой.

Для чего нужны контроллеры заряда аккумуляторов

Если аккумулятор подсоединить напрямую к клеммам солнечных батарей, то заряд его будет происходить непрерывно. В конечном итоге на уже полностью заряженный аккумулятор будет продолжать поступать ток, что вызовет повышение напряжения на несколько вольт. В результате происходит перезаряд АКБ, повышается температура электролита, причем эта температура достигает таких значений, что электролит закипает, происходит резкий выброс паров из банок аккумулятора. Как следствие, может произойти полное испарение электролита и высыхание банок. Естественно, это не добавляет «здоровья» аккумулятору и резко снижает ресурс его работоспособности.

Контроллер в системе солнечного заряда аккумуляторов

Вот, чтобы не допустить подобных явлений, чтобы оптимизировать процессы заряда/разряда, и нужны контроллеры.

Структурные схемы контроллеров

Принципиальные схемы контроллеров PWM и MPPT для рассмотрения их обывательским взглядом – это слишком сложный момент, сопряжённый с тонким пониманием электроники. Поэтому логично рассмотреть лишь структурные схемы. Такой подход понятен широкому кругу лиц.

Вариант #1 – устройства PWM

Напряжение от солнечной панели по двум проводникам (плюсовой и минусовой) приходит на стабилизирующий элемент и  разделительную резистивную цепочку. За счёт этого куска схемы получают выравнивание потенциалов входного напряжения и в какой-то степени организуют защиту входа контроллера от превышения границы напряжения входа.

Здесь следует подчеркнуть: каждая отдельно взятая модель аппарата имеет конкретную границу по напряжению входа (указано в документации).

Так примерно выглядит структурная схема устройств, выполненных на базе PWM технологий. Для эксплуатации в составе небольших бытовых станций такой схемный подход обеспечивает вполне достаточную эффективность

Далее напряжение и ток ограничиваются до необходимой величины силовыми транзисторами. Эти компоненты схемы, в свою очередь, управляются чипом контроллера через микросхему драйвера. В результате на выходе пары силовых транзисторов устанавливается нормальное значение напряжения и тока для аккумулятора.

Также в схеме присутствует датчик температуры и драйвер, управляющий силовым транзистором, которым регулируется мощность нагрузки (защита от глубокой разрядки АКБ). Датчиком температуры контролируется состояние нагрева важных элементов контроллера PWM.

Обычно уровень температуры внутри корпуса или на радиаторах силовых транзисторов. Если температура выходит за границы установленной в настройках, прибор отключает все линии активного питания.

Вариант #2 – приборы MPPT

Сложность схемы в данном случае обусловлена её дополнением целым рядом элементов, которые выстраивают необходимый алгоритм контроля более тщательно, исходя из условий работы.

Уровни напряжения и тока отслеживаются и сравниваются схемами компараторов, а по результатам сравнения определяется максимум мощности по выходу.

Схемное решение в структурном виде для контроллеров заряда, основанных на технологиях MPPT. Здесь уже отмечается более сложный алгоритм контроля и управления периферийными устройствами

Главное отличие этого вида контроллеров от приборов PWM в том, что они способны подстраивать энергетический солнечный модуль на максимум мощности независимо от погодных условий.

Схемой таких устройств реализуются несколько методов контроля:

  • возмущения и наблюдения;
  • возрастающей проводимости;
  • токовой развёртки;
  • постоянного напряжения.

А в конечном отрезке общего действия применяется ещё алгоритм сравнения всех этих методов.

Критерии выбора преобразователя

Первое, на что нужно обращать внимание, – это запас мощности ИВ, должен составлять не менее 25% общей нагрузки всех потребителей при одновременной их работе. Пусковые токи превышают номинальные показатели в несколько раз

Если производитель не указывает отдельно величину пиковой нагрузки, то номинальный параметр следует считать таковой.
Далее нужно учитывать геометрию выходного сигнала. Наилучшим таким параметром обладают гибридные преобразователи. Гибридный или многофункциональный прибор считают самым надёжным оборудованием гелиосистемы.
Большое значение имеет КПД, определяющий долю потерянной энергии на сопутствующие процессы. Оптимальное значение коэффициента должно быть не менее 90%. У качественных приборов КПД равен 95%.
В бытовых условиях лучшим вариантом выбора являются однофазные инверторы, так как бытовые приборы и устройства работают на токе напряжением 220 вольт и частотой 50 Гц. Трёхфазные ИВ выдают ток напряжением 315, 400 и 690 в.
Дорогое оборудование производители оснащают выходными трансформаторами. Наличие таких устройств определяется распределением 1 кг массы прибора на каждые 100 Вт мощности.
Надёжный качественный преобразователь должен иметь несколько контуров защиты. Это вентилятор принудительного охлаждения, а также предохранители от короткого замыкания и ограничители скачков напряжения.
Наличие режима ожидания позволяет существенно уменьшить скорость разряда аккумуляторов. Переход в дежурное состояние не выключает полностью инвертор. Потребляемая энергия уменьшается в несколько раз и расходуется лишь на поддержание прибора в рабочем состоянии.
Рабочий диапазон температуры производитель указывает в сопроводительной документации. На это надо обращать внимание при эксплуатации ИВ в помещении без отопления.
Если мощность солнечных батарей превышает 5 кВт, то устанавливают несколько инверторов. Оптимальным решением будет использование одного ИВ на каждые 5 кВт.

Инвертор для сварки

Контроллеры

Известный факт, что полное разряжение, как и чрезмерная зарядка, влияют на дальнейшую работу аккумуляторных батарей. Особо чувствительными являются свинцово-кислотные аккумуляторные панели. Для предохранения батарей от этих нагрузок и служит регулятор. При максимальной зарядке АКБ (аккумуляторной батареи) с помощью контроллеров уровень тока будет понижен, при понижении заряда до критических значений подача энергии будет остановлена.

Типы контроллеров

Существует несколько типов регуляторов: On/Off, ШИМ и МРРТ.

Перед подбором устройства необходимо ответить на два основных вопроса:

Какое напряжение на входе?

Какой номинальный ток?

Автоматический контроллер заряда с регулятором MPPT для солнечных батарей

Как и у большинства устройств, обязательно наличие прочностного запаса. Максимальное напряжение контроллера должно превышать общее напряжение на 20 процентов. Для определения запаса номинального тока нужно к величине тока короткого замыкания солнечных батарей прибавить 10–20 процентов, также данное значение зависит от типа регулятора. Эти данные можно найти в технических паспортах контроллеров. Например, для контроллера солнечных батарей SOL4UCN2 (ШИМ) выходное напряжение тока принимает значения 3 вольта, 6 вольт, 12 вольт. Также возможно подобрать контроллеры с выходным напряжением 36 или 48 вольт. К тому же необходимо предусмотреть инвертор для преобразования тока.

Контроллеры On/Off

В линейке контроллеров являются простейшими и, соответственно, недорогими. Когда заряд аккумулятора достигает предельного значения, контроллер разрывает соединение между солнечной панелью и батареей посредством реле. В действительности батарея не полностью заряжена, что оказывает влияние на дальнейшую работоспособность аккумулятора. Поэтому несмотря на низкую стоимость, лучше не использовать регулятор данного типа.

Контроллер On/Off для солнечных батарей

ШИМ (PWM) – контроллеры

Для этого типа контроллера применена технология широтно-импульсной модуляции. Преимуществом является прекращение заряда аккумуляторной батареи без отсоединения солнечных модулей, что позволяет продолжить зарядку АКБ до максимального уровня. Рекомендованная область применения – системы с небольшой мощностью (до 48 вольт).

МРРТ – контроллеры

Maximum power point tracker контроллер появился 80-х годах. Самым эффективным по праву считается именно этот тип контроллера. Он отслеживает максимальный энергетический пик и понижает напряжение, но увеличивает силу тока, не изменяя мощность. Благодаря высокому коэффициенту полезного действия МРРТ – контроллеры сокращают срок окупаемости солнечных станций. Выходные напряжения варьируются от 12 до 48 вольт.

Самодельные контроллеры

Безусловно, можно сделать контроллер своими руками. Прототипом служит . В его схеме с помощью реле коммутируется сигнал, полученный с ветрогенераторов или солнечных батарей. Реле управляется посредством пороговой схемы и полевого транзисторного ключа. Подстроечные резисторы регулируют пороги переключения режима.

Схема для создания контроллера своими руками

В данной схеме использовано 8 резисторов в качестве нагрузки для утилизации энергии. Эта схема является первоначальной, ее можно упростить самостоятельно, а можно прибегнуть к помощи достоверных источников. Несмотря на очевидную простоту конструкции, не рекомендуется использовать контроллеры, созданные своими руками, во избежание неблагоприятных последствий, таких как порча АКБ, например (при напряжениях 36–48 вольт).

Гибриды

Гибридным контроллером считается контроллер, использующий энергию ветра и солнца. Его преимуществом является возможность использование двух источников тока (ветрогенератора или солнечной батареи) совместно или попеременно. Незаменим для автономных производств.

Дополнительные функции аккумуляторных батарей

Прогресс не стоит на месте и благодаря ему можно подобрать контроллер с нужными характеристиками для каждого потребителя индивидуально. Модель контроллера может включать в себя дисплей с выводом информации о батарее, реле, солнечных панелях, количестве заряда, напряжении (вольт), токе. Также может присутствовать система оповещения при приближении разрядки и таймер для активации ночного режима. Существуют контроллеры с возможностью подключения к компьютеру.

Контроллер с возможностью подключения к компьютеру I-Panda SMART 2

IBC технология солнечных элементов

Вид на тыльную поверхность IBC элемента

IBC элементы не только самые эффективные, но и самые механически прочные, потому что задняя контактная поверхность создает дополнительную жесткость и поддержку кремниевому элементу. 

Но высокая цена несколько лет назад была и у самых распространенных сейчас PERC элементов, и у гетероструктурных элементов. Мы видим сейчас, что эти технологии постепенно вытесняют другие, менее эффективные, хотя и более дешевые технологии производства. Рынок предпочитает более эффективные солнечные батареи самым дешевым. Поэтому скорее всего, IBC технология также скоро выйдет на массовый рынок солнечных батарей. 

Среди самых эффективных современных солнечных модулей, использующих эту технологию можно назвать произведенные SunPower и LG монокристаллические кремниевые IBC N-type модули. Эти модули также имеют гарантию на 90-92% мощности через 25 лет, что существенно больше стандартной для остальных модулей гарантии в 80% через 25 лет. 

  • SunPower – Maxeon 3 – имеет 22.6% КПД

  • LG energy – Neon R – имеет 21.7% КПД

Смотрите полный список наиболее эффективных солнечных панелей по состоянию на 2021 год.

Инверторы сетевого типа

Отличительной особенностью сетевых инверторов является характер их работы по отношению к вешней электрической сети.

Устройства данного типа устанавливаются в электрическую цепь между солнечной панелью и электрической сетью 220/380 В. Установка сетевого инвертора предполагает работу солнечной электростанции без наличия накопителей энергии (аккумуляторов), когда выработанный солнечными батареями ток идет на питание отдельных потребителей, подключаемых непосредственно к инвертору, а излишки – во вешнюю сеть. Работа такого устройства осуществляется только в дневное время, когда есть солнечный свет.

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Как сделать своими руками

Если нет возможности приобрести уже готовый продукт, то его можно создать своими руками. Но если разобраться в том, как работает контроллер заряда солнечной батареи довольно просто, то вот создать его будет уже сложнее. При создании стоит понимать, что такой прибор будет хуже аналога, произведенного на заводе.

Это простейшая схема контроллера солнечной батареи, которую создать будет проще всего. Приведенный пример пригоден для создания контроллера для зарядки свинцово-кислотного аккумулятора с напряжением в 12 В и подключением маломощной солнечной батареей.

Если заменить номинальные показатели на некоторых ключевых элементах, то можно применять эту схему и для более мощных систем с аккумуляторами. Суть работы такого самодельного контроллера будет заключаться в том, что при напряжении ниже, чем 11 В нагрузка будет выключена, а при 12,5 В будет подана на аккумулятор.

Стоит сказать о том, что в простой схеме используется полевой транзистор, вместо защитного диода. Однако если есть некоторые знания в электрических схемах, можно создать контроллер более продвинутый.

Данная схема считается продвинутой, так как ее создание намного сложнее. Но контроллер с таким устройством вполне способен на стабильную работу не только с подключением к солнечной батарее, а еще и к ветрогенератору.  

TOPCon солнечные элементы

TOPCon означает Tunnel Oxide Passivated Contact и в настоящее время это наиболее продвинутая технология для солнечного элемента N-типа. Технология позволяет уменьшить рекомбинационные потери в переходе, что ведет к повышению эффективности. Вследствие различных причин, в солнечном элементе часть электронов рекомбинируется с дырками, что ведет к потерям тока. Ультратонкий слой TOPCon помогает уменьшить эти потери при минимальной цене в производстве. Впервые концепция TOPCon была предложена немецким институтом  Fraunhofer ISE в 2014 году, но до 2019 года она не получила значимого распространения. Только после того, как ее начали использовать такие крупные производители, как Trina Solar, JA Solar и Longi Solar, были получены в серийном производстве солнечные панели с КПД выше 22%.

Для понимания преимуществ этих элементов приведем сравнение характеристик двусторонних TopCon модулей производителя Jolywood (Китай)

ПараметрP-typeN-TOPcon
Мощность с обратной стороны, % от передней70%80%
Деградация в первый год эксплаутации2%1%
Ежегодная деградация0.7%0.4%
Гарантия на выработку, лет2530
Температурный коэффициент мощности-0.37%-0.32%

Ссылки на использованные материалы

  1. Top 10 Solar Panels – Latest Technology 2021
  2. What are shingled solar panels?
  3. pv-manufacturing.org

Эта статья прочитана 1802 раз(а)!

Подбор контроллера по напряжению и току солнечных батарей и акб

Большинство выпускаемых солнечных батарей имеет номинальное напряжение 12 или 24 вольта. Это сделано для того чтобы можно было заряжать аккумуляторные батареи без дополнительного преобразования напряжения. Аккумуляторные батареи появились значительно раньше солнечных батарей и имеют распространённый стандарт номинального напряжения на 12 или 24 вольта. Соответственно большинство контроллеров для солнечных батарей выпускается с номинальным рабочим напряжением равным 12 или 24 вольта, а также двухдиапазонные на 12 и 24 вольта с автоматическим распознаванием и переключением напряжения.

Номинальное напряжение на 12 и 24 вольта достаточно низкое для мощных систем. Для получения необходимой мощности приходится увеличивать количество солнечных батарей и аккумуляторов, соединяя их в параллельные контуры и значительно увеличивая силу тока. Увеличение силы тока ведет к нагреву кабеля и электрическим потерям. Необходимо увеличивать толщину кабеля, возрастает расход металла. Также необходимы мощные контроллеры, рассчитанные на высокий ток, такие контроллеры получаются очень дорогими.

Чтобы исключить возрастание тока, контроллеры для мощных систем делают для номинально рабочего напряжения на 36, 48 и 60 Вольт. Стоит заметить, что напряжение контроллеров кратно по напряжению 12 вольтам, для того чтобы можно было подключать солнечные батареи и акб в последовательные сборки. Контроллеры с кратным напряжением выпускаются только для технологии зарядки ШИМ.

Как видно ШИМ контроллеры выбираются с напряжением кратным 12 вольтам, причем в них входное номинальное напряжение от солнечных батарей и номинальное напряжение контура подключенных аккумуляторов должно быть одинаковым, т.е. 12В от СБ – 12В к АКБ, 24В на 24, 48В на 48В.

У контроллеров MPPT входное напряжение может быть равным или произвольно выше в несколько раз без кратности 12 Вольтам. Обычно MPPT контроллеры имеют входное напряжение от солнечных батарей от 50 Вольт для простых моделей и до 250 вольт для мощных контроллеров. Но следует учесть, что опять же производители указывают максимальное входное напряжение, и при последовательном подключении солнечных батарей следует складывать их максимальное напряжение, или напряжение холостого хода. Проще говоря: входное максимальное напряжение любое от 50 до 250В, в зависимости от модели, номинальное или минимальное входное при этом будет 12, 24, 36 или 48В. При этом выходное напряжение для заряда АКБ у контроллеров MPPT стандартное, часто с автоматическим определением и поддержкой напряжений на 12, 24, 36 и 48 Вольта, иногда 60 или 96 вольт.

Существуют серийные промышленные очень мощные MPPT контроллеры с входным напряжением от солнечных батарей на 600В, 800В и даже 2000В. Данные контроллеры также можно свободно приобрести у российских поставщиков оборудования.

Окромя выбора контроллера по рабочему напряжению, контроллеры следует выбирать по максимальному входному току от солнечных батарей и максимальному току заряда акб.

Для ШИМ контроллера, максимальный входной ток от солнечных батарей будет переходить в зарядный ток АКБ, т.е. контроллер не будет заряжать большим током, чем выдают подключенные к нему солнечные батареи.

В MPPT контроллере все иначе, входной ток от солнечных батарей и выходной ток для заряда акб – это разные параметры. Эти токи могут быть равными, если номинальное напряжение подключенных солнечных батарей равно номинальному напряжению подключенных акб, но тогда теряется суть преобразования MPPT, и эффективность контроллера уменьшается. В MPPT контроллерах номинальное входное напряжение от солнечных батарей должно быть выше номинального напряжения подключенных АКБ оптимально в 2-3 раза. Если входное напряжение выше ниже чем в 2 раза, к примеру, в 1,5 раза, то будет меньшая эффективность, а выше более чем в 3 раза, то будут большие потери на разницу преобразования напряжения.

Соответственно входной ток всегда будет равен или ниже максимальному выходному току заряда АКБ. Отсюда следует, что MPPT контроллеры необходимо выбирать по максимальному зарядному току АКБ. Но чтобы не превысить данный ток, указывается максимальная мощность подключаемых солнечных батарей, при номинальном напряжении контура подключенных АКБ. Пример для контроллера заряда MPPT на 60 Ампер:

  • 800Вт при напряжении АКБ электростанции 12В;

  • 1600Вт при напряжении АКБ электростанции 24В;

  • 2400Вт при напряжении АКБ электростанции 36В;

  • 3200Вт при напряжении АКБ электростанции 48В.

Следует заметить, что данная мощность при 12 вольт указана для зарядного напряжения от солнечных панелей в 13 – 14 Вольт, и кратна для остальных систем с напряжениями на 24, 36 и 48вольт.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий