Расчет гкал на отопление – формулы и правила

Физический смысл норматива потребления отопления

Многоквартирные дома в законодательстве РФ, в том числе в целях расчета объема потребления теплоэнергии для отопления, рассматриваются как неделимые единицы. То есть МКД — это единый теплотехнический объект, потребляющий теплоэнергию для отопления входящих в его состав помещений. И именно общий объем потребленной всем домом теплоэнергии важен при расчетах исполнителя коммунальных услуг (ИКУ) с ресурсоснабжающей организацией (РСО).

Правила установления и определения нормативов потребления коммунальных услуг, утвержденные ПП РФ от 23.05.2006 N306 (далее — Правила 306) с целью расчета норматива потребления коммунальной услуги по отоплению предусматривают сначала расчет количества тепловой энергии, необходимой для отопления многоквартирного дома или жилого дома в течение года (пункт 19 Приложения 1 к Правилам 306, формула 19). Год выбран в качестве периода, за который производится расчет, для дальнейшего получения усредненного значения норматива потребления теплоэнергии в месяц, поскольку в разные календарные месяцы потребление теплоэнергии на отопление будет, разумеется, разным, а оплата по нормативу предполагает одинаковый размер платы за отопление либо в течение отопительного периода, либо равномерно в течение календарного года, в зависимости от выбранного субъектом РФ способа оплаты отопления .

Поскольку многоквартирный дом состоит из совокупности жилых и нежилых помещений и мест общего пользования (общего имущества), при этом общее имущество на праве общедолевой собственности принадлежит собственникам отдельных помещений дома, весь объем тепловой энергии, поступающей в дом, потребляется именно собственниками помещений такого дома. Следовательно, и оплата теплоэнергии, потребленной на отопление, должна производиться собственниками помещений МКД. И тут возникает вопрос — каким образом распределить стоимость всего объема теплоэнергии, потребленной многоквартирным домом, между собственниками помещений этого МКД?

Руководствуясь вполне логичными выводами о том, что потребление теплоэнергии в каждом конкретном помещении зависит от размера такого помещения, Правительство РФ установило порядок распределения объема теплоэнергии, потребляемой всем домом, среди помещений такого дома пропорционально площади этих помещений. Такой порядок предусматривают как Правила 354 (распределение показаний общедомового прибора учета отопления пропорционально долям площадей помещений конкретных собственников в общей площади всех помещений дома в собственности), так и Правила 306 при установлении норматива потребления отопления.

Пункт 18 Приложения 1 к Правилам 306 устанавливает:«18. Норматив потребления коммунальной услуги по отоплению в жилых и нежилых помещениях (Гкал на 1 кв.м общей площади всех жилых и нежилых помещений в многоквартирном доме или жилого дома в месяц) определяется по следующей формуле (формула 18):

,

где:— количество тепловой энергии, потребляемой за один отопительный период многоквартирными домами, не оборудованными коллективными (общедомовыми) приборами учета тепловой энергии, или жилыми домами, не оборудованными индивидуальными приборами учета тепловой энергии (Гкал), определяемое по формуле 19;— общая площадь всех жилых и нежилых помещений в многоквартирных домах или общая площадь жилых домов (кв.м);— период, равный продолжительности отопительного периода (количество календарных месяцев, в том числе неполных, в отопительном периоде)».

Таким образом, именно приведенной формулой обусловлено, что норматив потребления коммунальной услуги по отоплению измеряется именно в Гкал/кв.метр, что, кроме всего прочего, прямо установлено подпунктом «е» пункта 7 Правил 306:«7. При выборе единицы измерения нормативов потребления коммунальных услуг используются следующие показатели:е) в отношении отопления:в жилых помещениях — Гкал на 1 кв. метр общей площади всех помещений в многоквартирном доме или жилого дома».

Исходя из сказанного, норматив потребления коммунальной услуги по отоплению равен количеству теплоэнергии, потребляемой в многоквартирном доме на 1 квадратный метр площади помещений в собственности в месяц отопительного периода (при выборе способа оплаты равномерно в течение года применяетсякоэффициент периодичности внесения потребителями платы ).

Юридические основания для перерасчета тепловой нагрузки

Право потребителей на расчет тепловых нагрузок закреплено

  • в каждом типовом договоре на снабжение тепловой энергией, а также
  • в приказе Министерства Регионального Развития РФ от 28.12.2009 № 610 «Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок».

В приказе Министерства Регионального Развития № 610 установлено, что для пересмотра договорных величин необходимо разработать технический отчет с расчетом тепловых нагрузок.

Отчет должен обосновывать изменение или снижение тепловой нагрузки для объекта.

Также, в приказе №610 установлено, что расчет тепловой нагрузки на отопление, вентиляцию и ГВС может быть пересмотрен после внедрения энергосберегающих мероприятий, а именно, после:

  • капитального ремонта,
  • реконструкции внутренних инженерных сетей, которая способствует снижению потерь через изоляцию и утечки,
  • увеличения тепловой защиты здания или объекта,
  • внедрения других энергосберегающих мероприятий.

Здесь можно скачать приказ Министерства Регионального Развития РФ от 28.12.2009 № 610 «Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок».

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м² ;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Анатолий Коневецкий, Крым, Ялта

Анатолий Коневецкий, Крым, Ялта

Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.

Анатолий Коневецкий, Крым, Ялта

Определение [ править | править код ]

Количество теплоты входит в математическую формулировку первого начала термодинамики, которую можно записать как Q = A + Δ U . Здесь Δ U — изменение внутренней энергии системы, Q — количество теплоты, переданное системе, а A — работа, совершённая системой. Однако определение теплоты должно указывать способ её измерения безотносительно к первому началу. Так как теплота — это энергия переданная в ходе теплообмена, для измерения количества теплоты необходимо пробное калориметрическое тело. По изменению внутренней энергии пробного тела можно будет судить о количестве теплоты, переданном от системы пробному телу. Без использования пробного тела первое начало теряет смысл содержательного закона и превращается в бесполезное для расчётов определение количества теплоты.

Пусть в системе, состоящей из двух тел X и Y , тело Y (пробное) заключено в жёсткую адиабатическую оболочку. Тогда оно не способно совершать макроскопическую работу, но может обмениваться энергией (то есть теплотой) с телом X . Предположим, что тело X также почти полностью заключено в адиабатическую, но не жёсткую оболочку, так что оно может совершать механическую работу, но обмениваться теплотой может лишь с Y . Количеством теплоты

, переданным телу X в некотором процессе, называется величина Q X = − Δ U Y =-Delta U_> , где Δ U Y > — изменение внутренней энергии тела Y . Согласно закону сохранения энергии, полная работа, выполненная системой, равна убыли полной внутренней энергии системы двух тел: A = − Δ U x − Δ U y -Delta U_> , где A — макроскопическая работа, совершенная телом X , что позволяет записать это соотношение в форме первого начала термодинамики: Q = A + Δ U x > .

Виды энергии:
МеханическаяПотенциальная Кинетическая
‹ ›Внутренняя
ЭлектромагнитнаяЭлектрическая Магнитная
Химическая
Ядерная
GГравитационная
Вакуума
Гипотетические:
Тёмная
См.также:Закон сохранения энергии

Таким образом, вводимое в феноменологической термодинамике количество теплоты может быть измерено посредством калориметрического тела (об изменении внутренней энергии которого можно судить по показанию соответствующего макроскопического прибора). Из первого начала термодинамики следует корректность введённого определения количества теплоты, то есть независимость соответствующей величины от выбора пробного тела Y и способа теплообмена между телами. При таком определении количества теплоты первое начало становится содержательным законом, допускающим экспериментальную проверку, так как все три величины, входящие в выражение для первого начала, могут быть измерены независимо .

Как сделать расчёт

При выборе насоса нужно знать, какое количество тепла дом отдаёт в окружающую среду. Какая тут связь? Дело в том, что теплоноситель, нагретый до определённого температурного режима, циркулируя по системе, постоянно отдаёт часть тепла в наружные стены. Это и есть теплопотери домовладения.

Насос помогает в нужном режиме циркулировать жидкости по трубам и радиаторам. Следует выяснить тот минимум теплоносителя, который будет перекачивать насос. Всё взаимосвязано: количество теплоносителя — тепловая энергия — работа циркуляционного насоса. Если тепловой энергии не хватит для компенсации теплопотерь, то система будет не эффективной.

Получается, что для того, чтобы решить задачу, нужно выяснить пропускную способность, которую может «потянуть» насос. Другими словами, необходимо рассчитать расход теплоносителя.

Но у этого параметра другое название, так как он, кроме насоса, зависит ещё от двух факторов: степени нагрева теплоносителя и пропускной способности водяного контура.

Таким образом, чтобы рассчитать расход теплоносителя в системе отопления, выясняют тепловые потери домовладения.

Этапы расчёта:

  • находят тепловые потери дома;
  • выясняют среднюю температуру теплоносителя;
  • делают расчет расхода теплоносителя по тепловой нагрузке, где учитываются теплопотери.

Варианты приблизительных расчетов

Выполнить точный расчет тепловой мощности системы отопления довольно сложно, его могут сделать только профессионалы, имеющие соответствующую квалификацию и специальные знания. По этой причине данные вычисления обычно поручают специалистам.

В тоже время существуют и более простые способы, позволяющие приблизительно оценить величину требуемой тепловой энергии и их можно сделать самостоятельно:

  1. Нередко применяют расчет мощности отопления по площади (детальнее: «Расчет отопления по площади — определяем мощность отопительных приборов «). Считается, что жилые дома возводятся по проектам, разработанным с учетом климата в определенном регионе, и что в проектных решениях заложено использование материалов, которые обеспечивают требуемый тепловой баланс. Поэтому при расчете принято умножать величину удельной мощности на площадь помещений. Например, для Московского региона данный параметр находится в пределе от 100 до 150 ватт на один «квадрат».
  2. Более точный результат будет получен, если учитывать объем помещения и температуру. Алгоритм вычисления включает высоту потолка, уровень комфорта в отапливаемом помещении и особенности дома.

Используемая формула выглядит следующим образом: Q = VхΔTхK/860, где: V – объем помещения; ΔT – разница между температурой внутри дома и снаружи на улице; К – коэффициент теплопотерь.

Поправочный коэффициент позволяет учесть конструктивные особенности объекта недвижимости. Например, когда определяется тепловая мощность системы отопления здания, для строений с обычной кровлей из двойной кирпичной кладки К находится в диапазоне 1,0–1,9.

Метод укрупненных показателей. Во многом похож на предыдущий вариант, но его применяют для вычисления тепловой нагрузки для систем отопления многоквартирных зданий или других больших объектов.

Все три вышеперечисленные способы, позволяющие сделать расчет необходимой теплоотдачи, дают приблизительный результат, который может отличаться от реальных данных или в меньшую, или в большую сторону. Понятно, что монтаж маломощной отопительной системы не обеспечит требуемую степень обогрева.

В свою очередь, избыток мощности у отопительного оборудования приведет к быстрому износу приборов, перерасходу топлива, электроэнергии, а соответственно и денежных средств. Подобные расчеты обычно применяют в несложных случаях, например, при выборе котла.

Расчет диаметра труб

Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:

  • для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
  • для однотрубной – расход теплоносителя G, кг/ч.

Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) — V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.

При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.

Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени

Q (Вт) = W (Дж)/t (с)

Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.

Таблица параметров участков

Обозначение участкаДлина участка в метрахКоличество приборов а участке, шт.
1-21,81
2-33,01
3-42,82
4-52,92

Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.

Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир. Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления. Далее на каждом участке размер трубы уменьшают на один шаг.

Такой подход не оправдывает себя, если в доме имеется два или более этажей. В этом случае приходится производит полноценный расчет и обращаться к таблицам.

Что такое Гкал?

Калория – определенное количество энергии, которое необходимо для нагрева 1 грамма воды до 1 градуса. Данное условие соблюдается в условиях атмосферного давления. Для расчетов тепловой энергии применяется большая величина – Гкал. Гигакалория соответствует 1 миллиарду калорий. Данная величина начала использоваться с 1995 года в соответствии с документом Министерства топлива и энергетики.

В России среднее значение потребления на 1 кв.м. составляет 0,9342 Гкал за месяц. В каждом регионе это значение может меняться в большую или меньшую сторону в зависимости от погодных условий.

Что такое гигакалория, если ее перевести в обычные величины?

  1. 1 Гигакалория равняется 1162,2 киловатт-часам.
  2. Для того чтобы нагреть 1 тысячу тонн воды до температуры +1 градус потребуется 1 гигакалория.

Формула расчета

Нормативы расхода тепловой энергии

Тепловые нагрузки рассчитываются с учетом мощности отопительного агрегата и тепловых потерь здания. Поэтому, чтобы определить мощность проектируемого котла, необходимо теплопотери здания умножить на повышающий коэффициент 1,2. Это своеобразный запас, равный 20%.

Для чего необходим такой коэффициент? С его помощью можно:

  • Прогнозировать падение давления газа в магистрали. Ведь зимой потребителей прибавляется, и каждый старается взять топлива больше, чем остальные.
  • Варьировать температурный режим внутри помещений дома.

Добавим, что тепловые потери не могут распределяться по всей конструкции здания равномерно. Разность показателей может быть достаточно большой. Вот некоторые примеры:

  • Через наружные стены покидает здание до 40% тепла.
  • Через полы — до 10%.
  • То же самое относится и к крыше.
  • Через вентиляционную систему — до 20%.
  • Через двери и окна — 10%.

Итак, с конструкцией здания разобрались и сделали одно очень важное заключение, что от архитектуры самого дома и места его расположения зависят потери тепла, которые необходимо компенсировать. Но многое также определяется и материалами стен, крыши и пола, а также наличием или отсутствием теплоизоляции

Это немаловажный фактор.

К примеру, определим коэффициенты, снижающие теплопотери, зависящие от оконных конструкций:

  • Обычные деревянные окна с обычными стеклами. Для расчета тепловой энергии в данном случае используется коэффициент, равный 1,27. То есть через такой вид остекления происходит утечка тепловой энергии, равной 27% от общего показателя.
  • Если установлены пластиковые окна с двухкамерными стеклопакетами, то используется коэффициент 1,0.
  • Если установлены пластиковые окна из шестикамернного профиля и с трехкамерным стеклопакетом, то берется коэффициент 0,85.

Идем дальше, разбираясь с окнами. Существует определенная связь площади помещения и площади оконного остекления. Чем больше вторая позиция, тем выше тепловые потери здания. И здесь есть определенное соотношение:

  • Если площадь окон по отношению к площади пола имеет всего лишь 10%-ный показатель, то для расчета тепловой мощности системы отопления используется коэффициент 0,8.
  • Если соотношение располагается в диапазоне 10-19%, то применяется коэффициент 0,9.
  • При 20% — 1,0.
  • При 30% —2.
  • При 40% — 1,4.
  • При 50% — 1,5.

И это только окна. А есть еще влияние материалов, которые использовались в строительстве дома, на тепловые нагрузки. Расположим их в таблице, где стеновые материалы будут располагаться с уменьшением тепловых потерь, а значит, их коэффициент будет также снижаться:

Вид строительного материала

Как видите, разница от используемых материалов существенная. Поэтому еще на стадии проектирования дома необходимо точно определиться с тем, из какого материала он будет возводиться. Конечно, многие застройщики строят дом на основе бюджета, выделенного на строительство. Но при таких раскладках стоит пересмотреть его. Специалисты уверяют, что лучше вложиться первоначально, чтобы впоследствии пожинать плоды экономии от эксплуатации дома. Тем более что система отопления зимой составляет одну из главных статей расхода.

Размеры комнат и этажность здания

Схема системы отопления

Итак, продолжаем разбираться в коэффициентах, влияющих на формулу расчета тепла. Как влияют размеры помещения на тепловые нагрузки?

  • Если высота потолков в вашем доме не превышает 2,5 метра, то в расчете учитывается коэффициент 1,0.
  • При высоте 3 м уже берется 1,05. Незначительная разница, но она существенно влияет на тепловые потери, если общая площадь дома достаточно велика.
  • При 3,5 м — 1,1.
  • При 4,5 м —2.

А вот такой показатель, как этажность постройки, влияет на теплопотери помещения по-разному. Здесь необходимо учитывать не только количество этажей, но и место помещения, то есть, на каком этаже оно расположено. К примеру, если это комната на первом этаже, а сам дом имеет три-четыре этажа, то для расчета используется коэффициент 0,82.

При перемещении помещения в верхние этажи повышается и показатель теплопотерь. К тому же придется учитывать чердак — утеплен он или нет.

Как видите, чтобы точно подсчитать тепловые потери здания, необходимо определиться с различными факторами. И их все обязательно надо учитывать. Кстати, нами были рассмотрены не все факторы, снижающие или повышающие тепловые потери. Но сама формула расчета будет в основном зависеть от площади отапливаемого дома и от показателя, который называется удельным значением тепловых потерь. Кстати, в данной формуле оно стандартное и равно 100 Вт/м². Все остальные составляющие формулы — коэффициенты.

Расчёт стоимости услуги ГВС

  • Viп — объем (количество) потребленного за расчетный период в i-м жилом или нежилом помещении коммунального ресурса, определенный по показаниям индивидуального или общего (квартирного) прибора учета в i-м жилом или нежилом помещении. В случаях, предусмотренных пунктом 59 Правил, для расчета размера платы за коммунальные услуги используется объем (количество) коммунального ресурса, определенный в соответствии с положениями указанного пункта;
  • Т кр — тариф (цена) на коммунальный ресурс, установленный в соответствии с законодательством Российской Федерации.

Рекомендуем прочесть: Уин где проверить

Размер платы за коммунальную услугу по горячему водоснабжению в i-м жилом или нежилом помещении, оборудованном индивидуальным или общим (квартирным) прибором учета горячей воды, согласно пунктам 42 и 43 Правил предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденных постановлением Правительства Российской Федерации от 6 мая 2011 г. N 354 (далее — Правила), определяется по формуле 1:

Необходимость расчета тепловой мощности системы отопления

Потребность в вычислении тепловой энергии, необходимой для обогрева комнат и подсобных помещений, связана с тем, что нужно определить основные характеристики системы в зависимости от индивидуальных особенностей проектируемого объекта, включая:

  • назначение здания и его тип;
  • конфигурацию каждого помещения;
  • количество жильцов;
  • географическое положение и регион, в котором находится населенный пункт;
  • прочие параметры.

Расчет необходимой мощности отопления является важным моментом, его результат используют для вычисления параметров отопительного оборудования, которое планируют установить:

  1. Подбор котла в зависимости от его мощности. Эффективность функционирования отопительной конструкции определяется правильностью выбора нагревательного агрегата. Котел должен иметь такую производительность, чтобы обеспечить обогрев всех помещений в соответствии с потребностями людей, проживающих в доме или квартире, даже в наиболее холодные зимние дни. Одновременно при наличии у прибора избыточной мощности часть вырабатываемой энергии не будет востребована, а значит, некоторая сумма денег потратится напрасно.
  2. Необходимость согласовывать подключение к магистральному газопроводу. Для присоединения к газовой сети потребуется ТУ. Для этого подают заявку в соответствующую службу с указанием предполагаемого расхода газа на год и оценкой тепловой мощности в сумме для всех потребителей.
  3. Выполнение расчетов периферийного оборудования. Расчет тепловых нагрузок на отопление необходим для определения длины трубопровода и сечения труб, производительности циркуляционного насоса, типа батарей и т.д.

Пример перерасчета и уменьшения тепловых нагрузок

Далее мы рассмотрим пример реального уменьшения тепловых нагрузок и затрат на отопления на одном из выполненных нами объектов.

Объект №1 – помещение коммерческого назначения

Помещение коммерческого назначения на первом этаже пяти-этажного здания в Москве.

Основные данные по объекту:

Адрес объектаг. Москва
Этажность здания5 этажей
Этаж на котором расположены обследуемые помещения1-й
Площадь обследуемых помещений112,9 м2
Высота этажа3,0 м
Система отопленияОднотрубная
Температурный график95-70 оС
Расчетный температурный график для этажа на котором находится помещение75-70 оС
Тип розливаВерхний
Расчетная температура внутреннего воздуха+ 20 оС
Отопительные радиаторы, тип, количествоРадиаторы чугунные М-140-АО – 6 шт. Радиатор биметаллический Global (Глобал) – 1 шт.
Диаметр труб системы отопления, ммДу25
Длина подающего трубопровода системы отопления, мL = 28,0 м.

Горячее водоснабжение и вентиляция на данном объекте отсутствовали.

Договорные тепловые нагрузки составляли 0,02 Гкал/час или 47,67 Гкал/год.

Расчет теплопередачи установленных радиаторов отопления с учетом потерь в трубопроводах и способа установки составил 0,007454 Гкал/час.

Максимальный часовой расход на отопление в трубопроводах составил 0.001501 Гкал/час.

В итоге, максимальный часовой расход на отопление составил 0,008955 Гкал/час или 23 Гкал/год.

Годовая экономия = 47,67 – 23 = 24,67 Гкал/год.

При средней стоимости Гкал 1,7 тысяч рублей, годовая экономия на отоплении для объекта площадью 112 м. кв. составила 42 тысячи рублей.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий